首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 957 毫秒
1.
The interaction of the coatomer coat complex with the Golgi membrane is initiated by the active, GTP-bound state of the small GTPase ADP-ribosylation factor 1 (ARF1), whereas GTP hydrolysis triggers coatomer dissociation. The hydrolysis of GTP on ARF1 depends on the action of members of a family of ARF1-directed GTPase-activating proteins (GAPs). Previous studies in well defined systems indicated that the activity of a mammalian Golgi membrane-localized ARF GAP (GAP1) might be subjected to regulation by membrane lipids as well as by the coatomer complex. Coatomer was found to strongly stimulate GAP-dependent GTP hydrolysis on a membrane-independent mutant of ARF1, whereas we reported that GTP hydrolysis on wild type, myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles was coatomer-independent. To investigate the regulation of ARF1 GAPs under more physiological conditions, we studied GTP hydrolysis on Golgi membrane-associated ARF1. The activities at the Golgi of recombinant GAP1 as well as coatomer-depleted fractions from rat brain cytosol resembled those observed in the presence of liposomes; however, unlike in liposomes, GAP activities on Golgi membranes were approximately doubled upon addition of coatomer. By contrast, endogenous GAP activity in Golgi membrane preparations was unaffected by coatomer. Cytosolic GAP activity was partially reduced following immunodepletion of GAP1, indicating that GAP1 plays a significant although not exclusive role in the regulation of GTP hydrolysis at the Golgi. Unlike the activities of the mammalian proteins, the Saccharomyces cerevisiae Glo3 ARF GAP displayed activity at the Golgi that was highly dependent on coatomer. We conclude that ARF GAPs in themselves can efficiently stimulate GTP hydrolysis on ARF1 at the Golgi, and that coatomer may play an auxiliary role in this reaction, which would lead to an increased cycling rate of ARF1 in COPI-coated regions of the Golgi membrane.  相似文献   

2.
In the formation of COPI vesicles, interactions take place between the coat protein coatomer and membrane proteins: either cargo proteins for retrieval to the endoplasmic reticulum (ER) or proteins that cycle between the ER and the Golgi. While the binding sites on coatomer for ER residents have been characterized, how cycling proteins bind to the COPI coat is still not clear. In order to understand at a molecular level the mechanism of uptake of such proteins, we have investigated the binding to coatomer of p24 proteins as examples of cycling proteins as well as that of ER-resident cargos. The p24 proteins required dimerization to interact with coatomer at two independent binding sites in gamma-COP. In contrast, ER-resident cargos bind to coatomer as monomers and to sites other than gamma-COP. The COPI coat therefore discriminates between p24 proteins and ER-resident proteins by differential binding involving distinct subunits.  相似文献   

3.
The small GTPase ADP-ribosylation factor-1 (Arf1) plays a key role in the formation of coat protein I (COP I)-coated vesicles. Upon recruitment to the donor Golgi membrane by interaction with dimeric p24 proteins, Arf1's GDP is exchanged for GTP. Arf1-GTP then dissociates from p24, and together with other Golgi membrane proteins, it recruits coatomer, the heptameric coat protein complex of COP I vesicles, from the cytosol. In this process, Arf1 was shown to specifically interact with the coatomer beta and gamma-COP subunits through its switch I region, and with epsilon-COP. Here, we mapped the interaction of the Arf1-GTP switch I region to the trunk domains of beta and gamma-COP. Site-directed photolabeling at position 167 in the C-terminal helix of Arf1 revealed a novel interaction with coatomer via a putative longin domain of delta-COP. Thus, coatomer is linked to the Golgi through multiple interfaces with membrane-bound Arf1-GTP. These interactions are located within the core, adaptor-like domain of coatomer, indicating an organizational similarity between the COP I coat and clathrin adaptor complexes.  相似文献   

4.
Formation of coatomer-coated vesicles from Golgi-enriched membranes requires the activation of a small GTP-binding protein, ADP ribosylation factor (ARF). ARF is also an efficacious activator of phospholipase D (PLD), an activity that is relatively abundant on Golgi- enriched membranes. It has been proposed that ARF, which is recruited onto membranes from cytosolic pools, acts directly to promote coatomer binding and is in a 3:1 stoichiometry with coatomer on coated vesicles. We present evidence that cytosolic ARF is not necessary for initiating coat assembly on Golgi membranes from cell lines with high constitutive PLD activity. Conditions are also described under which ARF is at most a minor component relative to coatomer in coated vesicles from all cell lines tested, including Chinese hamster ovary cells. Formation of coated vesicles was sensitive to ethanol at concentrations that inhibit the production of phosphatidic acid (PA) by PLD. When PA was produced in Golgi membranes by an exogenous bacterial PLD, rather than with ARF and endogenous PLD, coatomer bound to Golgi membranes. Purified coatomer also bound selectively to artificial lipid vesicles that contained PA and phosphatidylinositol (4,5)-bisphosphate (PIP2). We propose that activation of PLD and the subsequent production of PA are key early events for the formation of coatomer-coated vesicles.  相似文献   

5.
We have analyzed in vitro the binding characteristics of members of the ADP-ribosylation factor (ARF) family of proteins to a highly purified rat liver peroxisome preparation void of Golgi membranes and studied in vivo a role these proteins play in the proliferation of yeast peroxisomes. Although both ARF1 and ARF6 were found on peroxisomes, coatomer recruitment only depended on ARF1-GTP. Recruitment of ARF1 and coatomer to peroxisomes was significantly affected both by pretreating the animals with peroxisome proliferators and by ATP and a cytosolic fraction designated the intermediate pool fraction depleted of ARF and coatomer. In the presence of ATP, the concentrations of ARF1 and coatomer on peroxisomes were reduced, whereas intermediate pool fraction led to a concentration-dependent decrease in ARF and increase in coatomer. Brefeldin A, a fungal toxin that is known to reduce ARF1 binding to Golgi membranes, did not affect ARF1 binding to peroxisomes. In Saccharomyces cerevisiae, both ScARF1 and ScARF3, the yeast orthologs of mammalian ARF1 and ARF6, were implicated in the control of peroxisome proliferation. ScARF1 regulated this process in a positive manner, and ScARF3 regulated it in a negative manner.  相似文献   

6.
《The Journal of cell biology》1995,128(6):1003-1017
The ARF GTP binding proteins are believed to function as regulators of membrane traffic in the secretory pathway. While the ARF1 protein has been shown in vitro to mediate the membrane interaction of the cytosolic coat proteins coatomer (COP1) and gamma-adaptin with the Golgi complex, the functions of the other ARF proteins have not been defined. Here, we show by transient transfection with epitope-tagged ARFs, that whereas ARF1 is localized to the Golgi complex and can be shown to affect predictably the assembly of COP1 and gamma-adaptin with Golgi membranes in cells, ARF6 is localized to the endosomal/plasma membrane system and has no effect on these Golgi-associated coat proteins. By immuno-electron microscopy, the wild-type ARF6 protein is observed along the plasma membrane and associated with endosomes, and overexpression of ARF6 does not appear to alter the morphology of the peripheral membrane system. In contrast, overexpression of ARF6 mutants predicted either to hydrolyze or bind GTP poorly shifts the distribution of ARF6 and affects the structure of the endocytic pathway. The GTP hydrolysis-defective mutant is localized to the plasma membrane and its overexpression results in a profound induction of extensive plasma membrane vaginations and a depletion of endosomes. Conversely, the GTP binding-defective ARF6 mutant is present exclusively in endosomal structures, and its overexpression results in a massive accumulation of coated endocytic structures.  相似文献   

7.
《The Journal of cell biology》1996,135(5):1239-1248
Formation of non-clathrin-coated vesicles requires the recruitment of several cytosolic factors to the Golgi membrane. To identify membrane proteins involved in this budding process, a highly abundant type I transmembrane protein (p23) was isolated from mammalian Golgi-derived COPI-coated vesicles, and its cDNA was cloned and sequenced. It belongs to the p24 family of proteins involved in the budding of transport vesicles (Stamnes, M.A., M.W. Craighead, M.H. Hoe, N. Lampen, S. Geromanos, P. Tempst, and J.E. Rothman. 1995. Proc. Natl. Acad. Sci. USA. 92:8011-8015). p23 consists of a large NH2-terminal luminal domain and a short COOH-terminal cytoplasmic tail (-LRRFFKAKKLIE-CO2-) that shows similarity, but not identity, with the sequence motif-KKXX-CO2-, known as a signal for retrieval of escaped ER-resident membrane proteins (Jackson, M.R., T. Nilsson, and P.A. Peterson. 1990. EMBO (Eur. Mol. Biol. Organ.) J. 9:3153-3162; Nilsson, T., M. Jackson, and P.A. Peterson. 1989. Cell. 58:707-718). The cytoplasmic tail of p23 binds to coatomer with similar efficiency as known KKXX motifs. However, the p23 tail differs from the KKXX motif in having an additional motif needed for binding of coatomer. p23 is localized to Golgi cisternae and, during vesicle formation, it concentrates into COPI-coated buds and vesicles. Biochemical analysis revealed that p23 is enriched in vesicles by a factor of approximately 20, as compared with the donor Golgi fraction, and is present in amounts stoichiometric to the small GTP-binding protein ADP-ribosylation factor (ARF) and coatomer. From these data we conclude that p23 represents a Golgi- specific receptor for coatomer involved in the formation of COPI-coated vesicles.  相似文献   

8.
In mammals and yeast, a cytosolic dilysine motif is critical for endoplasmic reticulum (ER) localization of type I membrane proteins. Retrograde transport of type I membrane proteins containing dilysine motifs at their cytoplasmic carboxy (C)-terminal tail involves the interaction of these motifs with the COPI coat. The C-terminal dilysine motif has also been shown to confer ER localization to type I membrane proteins in plant cells. Using in vitro binding assays, we have analyzed sorting motifs in the cytosolic tail of membrane proteins, which may be involved in the interaction with components of the COPI coat in plant cells. We show that a dilysine motif in the -3,-4 position (relative to the cytosolic C-terminus) recruits in a very specific manner all the subunits of the plant coatomer complex. Lysines cannot be replaced by arginines or histidines to bind plant coatomer. A diphenylalanine motif in the -7,-8 position, which by itself has a low ability to bind plant coatomer, shows a clear cooperativity with the dilysine motif. Both dilysine and diphenylalanine motifs are present in the cytosolic tail of several proteins of the p24 family of putative cargo receptors, which has several members in plant cells. The cytosolic tail of a plant p24 protein is shown to recruit not only coatomer but also ADP ribosylation factor 1 (ARF1), a process which depends on both dilysine and diphenylalanine motifs. ARF1 binding increases twofold upon treatment with brefeldin A (BFA) and is completely abolished upon treatment with GTPgammaS, suggesting that ARF1 can only interact with the cytosolic tail of p24 proteins in its GDP-bound form.  相似文献   

9.
The molecular mechanisms underlying cytoskeleton‐dependent Golgi positioning are poorly understood. In mammalian cells, the Golgi apparatus is localized near the juxtanuclear centrosome via dynein‐mediated motility along microtubules. Previous studies implicate Cdc42 in regulating dynein‐dependent motility. Here we show that reduced expression of the Cdc42‐specific GTPase‐activating protein, ARHGAP21, inhibits the ability of dispersed Golgi membranes to reposition at the centrosome following nocodazole treatment and washout. Cdc42 regulation of Golgi positioning appears to involve ARF1 and a binding interaction with the vesicle‐coat protein coatomer. We tested whether Cdc42 directly affects motility, as opposed to the formation of a trafficking intermediate, using a Golgi capture and motility assay in permeabilized cells. Disrupting Cdc42 activation or the coatomer/Cdc42 binding interaction stimulated Golgi motility. The coatomer/Cdc42‐sensitive motility was blocked by the addition of an inhibitory dynein antibody. Together, our results reveal that dynein and microtubule‐dependent Golgi positioning is regulated by ARF1‐, coatomer‐, and ARHGAP21‐dependent Cdc42 signaling.  相似文献   

10.
The binding of the coat protein complex, coatomer, to the Golgi is mediated by the small GTPase ADP-ribosylation factor-1 (ARF1), whereas the dissociation of coatomer, requires GTP hydrolysis on ARF1, which depends on a GTPase-activating protein (GAP). Recent studies demonstrate that when GAP activity is assayed in a membrane-free environment by employing an amino-terminal truncation mutant of ARF1 (Delta17-ARF1) and a catalytic fragment of the ARF GTPase-activating protein GAP1, GTP hydrolysis is strongly stimulated by coatomer (Goldberg, J., (1999) Cell 96, 893-902). In this study, we investigated the role of coatomer in GTP hydrolysis on ARF1 both in solution and in a phospholipid environment. When GTP hydrolysis was assayed in solution using Delta17-ARF1, coatomer stimulated hydrolysis in the presence of the full-length GAP1 as well as with a Saccharomyces cerevisiae ARF GAP (Gcs1) but had no effect on hydrolysis in the presence of the phosphoinositide dependent GAP, ASAP1. Using wild-type myristoylated ARF1 loaded with GTP in the presence of phospholipid vesicles, GAP1 by itself stimulated GTP hydrolysis efficiently, and coatomer had no additional effect. Disruption of the phospholipid vesicles with detergent resulted in reduced GAP1 activity that was stimulated by coatomer, a pattern that resembled Delta17-ARF1 activity. Our findings suggest that in the biological membrane, the proximity between ARF1 and its GAP, which results from mutual binding to membrane phospholipids, may be sufficient for stimulation of ARF1 GTPase activity.  相似文献   

11.
Yu X  Breitman M  Goldberg J 《Cell》2012,148(3):530-542
Budding of COPI-coated vesicles from Golgi membranes requires an Arf family G protein and the coatomer complex recruited from cytosol. Arf is also required with coatomer-related clathrin adaptor complexes to bud vesicles from the trans-Golgi network and endosomal compartments. To understand the structural basis for Arf-dependent recruitment of a vesicular coat to the membrane, we determined the structure of Arf1 bound to the γζ-COP subcomplex of coatomer. Structure-guided biochemical analysis reveals that a second Arf1-GTP molecule binds to βδ-COP at a site common to the γ- and β-COP subunits. The Arf1-binding sites on coatomer are spatially related to PtdIns4,5P(2)-binding sites on the endocytic AP2 complex, providing evidence that the orientation of membrane binding is general for this class of vesicular coat proteins. A bivalent GTP-dependent binding mode has implications for the dynamics of coatomer interaction with the Golgi and for the selection of cargo molecules.  相似文献   

12.
COPI, a protein complex consisting of coatomer and the small GTPase ARF1, is an integral component of some intracellular transport carriers. The association of COPI with secretory membranes has been implicated in the maintenance of Golgi integrity and the normal functioning of intracellular transport in eukaryotes. The regulator of G protein signaling, RGS4, interacted with the COPI subunit beta'-COP in a yeast two-hybrid screen. Both recombinant RGS4 and RGS2 bound purified recombinant beta'-COP in vitro. Endogenous cytosolic RGS4 from NG108 cells and RGS2 from HEK293T cells cofractionated with the COPI complex by gel filtration. Binding of beta'-COP to RGS4 occurred through two dilysine motifs in RGS4, similar to those contained in some aminoglycoside antibiotics that are known to bind coatomer. RGS4 inhibited COPI binding to Golgi membranes independently of its GTPase-accelerating activity on G(ialpha). In RGS4-transfected LLC-PK1 cells, the amount of COPI in the Golgi region was considerably reduced compared with that in wild-type cells, but there was no detectable difference in the amount of either Golgi-associated ARF1 or the integral Golgi membrane protein giantin, indicating that Golgi integrity was preserved. In addition, RGS4 expression inhibited trafficking of aquaporin 1 to the plasma membrane in LLC-PK1 cells and impaired secretion of placental alkaline phosphatase from HEK293T cells. The inhibitory effect of RGS4 in these assays was independent of GTPase-accelerating activity but correlated with its ability to bind COPI. Thus, these data support the hypothesis that these RGS proteins sequester coatomer in the cytoplasm and inhibit its recruitment onto Golgi membranes, which may in turn modulate Golgi-plasma membrane or intra-Golgi transport.  相似文献   

13.
Examining how key components of coat protein I (COPI) transport participate in cargo sorting, we find that, instead of ADP ribosylation factor 1 (ARF1), its GTPase-activating protein (GAP) plays a direct role in promoting the binding of cargo proteins by coatomer (the core COPI complex). Activated ARF1 binds selectively to SNARE cargo proteins, with this binding likely to represent at least a mechanism by which activated ARF1 is stabilized on Golgi membrane to propagate its effector functions. We also find that the GAP catalytic activity plays a critical role in the formation of COPI vesicles from Golgi membrane, in contrast to the prevailing view that this activity antagonizes vesicle formation. Together, these findings indicate that GAP plays a central role in coupling cargo sorting and vesicle formation, with implications for simplifying models to describe how these two processes are coupled during COPI transport.  相似文献   

14.
Correct targeting of plant ARF GTPases relies on distinct protein domains   总被引:2,自引:0,他引:2  
Indispensable membrane trafficking events depend on the activity of conserved small guanosine triphosphatases (GTPases), anchored to individual organelle membranes. In plant cells, it is currently unknown how these proteins reach their correct target membranes and interact with their effectors. To address these important biological questions, we studied two members of the ADP ribosylation factor (ARF) GTPase family, ARF1 and ARFB, which are membrane anchored through the same N-terminal myristoyl group but to different target membranes. Specifically, we investigated how ARF1 is targeted to the Golgi and post-Golgi structures, whereas ARFB accumulates at the plasma membrane. While the subcellular localization of ARFB appears to depend on multiple domains including the C-terminal half of the GTPase, the correct targeting of ARF1 is dependent on two domains: an N-terminal ARF1 domain that is necessary for the targeting of the GTPase to membranes and a core domain carrying a conserved MxxE motif that influences the relative distribution of ARF1 between the Golgi and post-Golgi compartments. We also established that the N-terminal ARF1 domain alone was insufficient to maintain an interaction with membranes and that correct targeting is a protein-specific property that depends on the status of the GTP switch. Finally, an ARF1-ARFB chimera containing only the first 18 amino acids from ARF1 was shown to compete with ARF1 membrane binding loci. Although this chimera exhibited GTPase activity in vitro, it was unable to recruit coatomer, a known ARF1 effector, onto Golgi membranes. Our results suggest that the targeting of ARF GTPases to the correct membranes may not only depend on interactions with effectors but also relies on distinct protein domains and further binding partners on the Golgi surface.  相似文献   

15.
Formation of transport vesicles involves polymerization of cytoplasmic coat proteins (COP). In COPI vesicle biogenesis, the heptameric complex coatomer is recruited to donor membranes by the interaction of multiple coatomer subunits with the budding machinery. Specific binding to the trunk domain of γ-COP by the Golgi membrane protein p23 induces a conformational change that causes polymerization of the complex. Using single-pair fluorescence resonance energy transfer, we find that this conformational change takes place in individual coatomer complexes, independent of each other, and that the conformational rearrangement induced in γ-COP is transmitted within the complex to its α-subunit. We suggest that capture of membrane protein machinery triggers cage formation in the COPI system.  相似文献   

16.
The G-protein activators guanosine 5'-O-(3-thiodiphosphate) (GTPΓS) and aluminum fluoride (AlF) are thought to inhibit transport between Golgi cisternae by causing the accumulation of nonfunctional coatomer-coated transport vesicles on the Golgi. Although GTPΓS and AlF inhibit transport in cell-free intra-Golgi transport systems, blocking coatomer vesicle formation does not. We therefore determined whether inhibition of in vitro Golgi transport by these agents requires coatomer vesicle formation. Depletion of coatomer was found to completely block coated vesicle formation on Golgi cisternae without affecting inhibition of in vitro transport by either GTPΓS or AlF. Depletion of ADP-ribosylation factor (ARF) prevented inhibition of transport by GTPΓS, but not by AlF, suggesting that the AlF-sensitive component in transport may not be a GTP-binding protein. Surprisingly, depletion of cytosolic ARF did not prevent the GTPΓS-induced formation of Golgi-coated vesicles, whereas ARF was required for AlF-induced vesicle formation. Although ARF or coatomer depletion caused an increase in the fenestration of cisternae, no other utrastructural changes were observed that might explain the inhibition of transport by GTPΓS or AlF. These findings suggest that ARF-GTPΓS and AlF act by distinct and coatomer-independent mechanisms to inhibit membrane fusion in cell-free intra-Golgi transport.  相似文献   

17.
We reported that an inhibitor of sphingolipid biosynthesis, D, L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (PDMP), blocks brefeldin A (BFA)-induced retrograde membrane transport from the Golgi complex to the endoplasmic reticulum (ER) (Kok et al., 1998, J. Cell Biol. 142, 25-38). We now show that PDMP partially blocks the BFA-induced ADP-ribosylation of the cytosolic protein BARS-50. Moreover, PDMP does not interfere with the BFA-induced inhibition of the binding of ADP-ribosylation factor (ARF) and the coatomer component beta-coat protein to Golgi membranes. These results are consistent with a role of ADP-ribosylation in the action of BFA and with the involvement of BARS-50 in the regulation of membrane trafficking.  相似文献   

18.
Coatomer is the soluble precursor of the COPI coat (coat protein I) involved in traffic among membranes of the endoplasmic reticulum and the Golgi apparatus. We report herein that neomycin precipitates coatomer from cell extracts and from purified coatomer preparations. Precipitation first increased and then decreased as the neomycin concentration increased, analogous to the precipitation of a polyvalent antigen by divalent antibodies. This suggested that neomycin cross-linked coatomer into large aggregates and implies that coatomer has two or more binding sites for neomycin. A variety of other aminoglycoside antibiotics precipitated coatomer, or if they did not precipitate, they interfered with the ability of neomycin to precipitate. Coatomer is known to interact with a motif (KKXX) containing adjacent lysine residues at the carboxyl terminus of the cytoplasmic domains of some membrane proteins resident in the endoplasmic reticulum. All of the antibiotics that interacted with coatomer contain at least two close amino groups, suggesting that the antibiotics might be interacting with the di-lysine binding site of coatomer. Consistent with this idea, di-lysine itself blocked the interaction of antibiotics with coatomer. Moreover, di-lysine and antibiotics each blocked the coating of Golgi membranes by coatomer. These data suggest that certain aminoglycoside antibiotics interact with di-lysine binding sites on coatomer and that coatomer contains at least two of these di-lysine binding sites.  相似文献   

19.
Vps74p, a member of the GOLPH3 protein family, binds directly to coatomer and the cytoplasmic tails of a subset of Golgi‐resident glycosyltransferases to mediate their Golgi retention. We identify a cluster of arginine residues at the N‐terminal end of GOLPH3 proteins that are necessary and sufficient to mediate coatomer binding. While loss of coatomer binding renders Vps74p non‐functional for glycosyltransferase retention, the Golgi membrane‐binding capabilities of the mutant protein are not significantly reduced. We establish that the oligomerization status and phosphatidylinositol‐4‐phosphate‐binding properties of Vps74p largely account for the membrane‐binding capacity of the protein and identify an Arf1p–Vps74p interaction as a potential contributing factor in Vps74p Golgi membrane association .  相似文献   

20.
Constitutive secretory transport in eukaryotes is likely to be mediated by non-clathrin-coated vesicles, which have been isolated and characterized [(1989) Cell 58, 329-336; (1991) Nature 349, 215-220]. They contain a set of coat proteins (COPs) which are also likely to exist in a preformed cytosolic complex named coatomer [(1991) Nature 349, 248-250]. From peptide sequence and cDNA structure comparisons evidence is presented that one of the subunits of coatomer, gamma-COP, is a true constituent of non-clathrin-coated vesicles, and that gamma-COP is related to sec 21, a secretory mutant of the yeast Saccharomyces cervisiae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号