首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
DNA in eukaryotic organisms does not exist free in cells, but instead is present as chromatin, a complex assembly of DNA, histone proteins, and chromatin-associated proteins. Chromatin exhibits a complex hierarchy of structures, but in its simplest form it is composed of long linear arrays of nucleosomes. Nucleosomes contain 147 base pairs of DNA wrapped around a histone octamer, consisting of two copies each of histones H2A, H2B, H3 and H4, where 15-38 amino terminal residues of each histone protein extends past the DNA gyres to form histone “tails” 1. Chromatin provides a versatile regulatory platform for nearly all cellular processes that involve DNA, and improper chromatin regulation results in a wide range of diseases, including various cancers and congenital defects. One major way that chromatin regulates DNA utilization is through a wide range of post-translational modification of histones, including serine and threonine phosphorylation, lysine acetylation, methylation, ubiquitination, and sumoylation, and arginine methylation 2. Histone H4 K16 acetylation is a modification that occurs on the H4 histone tail and is one of the most frequent of the known histone modifications. We have demonstrated that this mark both disrupts formation of higher-order chromatin structure and changes the functional interaction of chromatin-associated proteins 3. Our results suggest a dual mechanism by which H4 K16 acetylation can ultimately facilitate genomic functions.  相似文献   

4.
5.
6.
Modulation of ISWI function by site-specific histone acetylation   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
Histone modifications are implicated in regulating chromatin condensation but it is unclear how they differ between constitutive heterochromatin and unexpressed euchromatin. Chromatin immunoprecipitation (ChIP) assays were done on various human cell populations using antibodies specific for acetylated or methylated forms of histone H3 or H4. Analysis of the immunoprecipitates was by quantitative real-time PCR or semi-quantitative PCR (SQ-PCR). Of eight tested antibodies, the one for histone H4 acetylated at lysine 4, 8, 12, or 16 was best for distinguishing constitutive heterochromatin from unexpressed euchromatin, but differences in the extent of immunoprecipitation of these two types of chromatin were only modest, although highly reproducible. With this antibody, there was an average of 2.5-fold less immunoprecipitation of three constitutive heterochromatin regions than of four unexpressed euchromatic gene regions and about 15-fold less immunoprecipitation of these heterochromatin standards than of two constitutively expressed gene standards (P <0.001). We also analyzed histone acetylation and methylation by immunocytochemistry with antibodies to H4 acetylated at lysine 8, H3 trimethylated at lysine 9, and H3 methylated at lysine 4. In addition, immunocytochemical analysis was done with an antibody to heterochromatin protein 1alpha (HP1alpha), whose preferential binding to heterochromatin has been linked to trimethylation of H3 at lysine 9. Our combined ChIP and immunocytochemical results suggest that factors other than hypoacetylation of the N-terminal tails of H4 and hypermethylation of H3 at lysine 9 can play an important role in determining whether a chromatin sequence in mammalian cells is constitutively heterochromatic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号