首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Only few biological markers are currently available for the routine diagnosis of brain damage-related disorders including cerebrovascular, dementia, and other neurodegenerative diseases. In this study, post-mortem cerebrospinal fluid samples were used as a model of massive brain insult to identify new markers potentially relevant for neurodegeneration. The protein pattern of this sample was compared to the one of cerebrospinal fluid from healthy subjects by two-dimensional gel electrophoresis. Using gel imaging, N-terminal microsequencing, mass spectrometry, and immunodetection techniques, we identified 13 differentially expressed proteins. Most of these proteins have been previously reported to be somehow associated with brain destruction or with the molecular mechanisms underlying certain neurodegenerative conditions. These data indicate that the identified proteins indeed represent potential biomarkers of brain damage. We recently showed that H-FABP, a protein highly homologous to E-FABP and A-FABP identified in this study, is a potential marker of Creutzfeldt-Jakob disease and stroke.  相似文献   

2.
The familial Alzheimer's disease gene product amyloid beta precursor protein (APP) is sequentially processed by beta- and gamma-secretases to generate the Abeta peptide. The biochemical pathway leading to Abeta formation has been extensively studied since extracellular aggregates of Abeta peptides are considered the culprit of Alzheimer's disease. Aside from its pathological relevance, the biological role of APP processing is unknown. Cleavage of APP by gamma-secretase releases, together with Abeta, a COOH-terminal APP intracellular domain, termed AID. This peptide has recently been identified in brain tissue of normal control and patients with sporadic Alzheimer's disease. We have previously shown that AID acts as a positive regulator of apoptosis. Nevertheless, the molecular mechanism by which AID regulates this process remains unknown. Hoping to gain clues about the function of APP, we used the yeast two-hybrid system to identify interaction between the AID region of APP and JNK-interacting protein-1 (JIP1). This molecular interaction is confirmed in vitro, in vivo by fluorescence resonance energy transfer (FRET), and in mouse brain lysates. These data provide a link between APP and its processing by gamma-secretase, and stress kinase signaling pathways. These pathways are known regulators of apoptosis and may be involved in the pathogenesis of Alzheimer's disease.  相似文献   

3.
We studied the plasma beta carotene concentrations in 40 Alzheimer's disease patients and the association with cerebrospinal fluid beta-amyloid 1-40, (Abeta40), cerebrospinal fluid beta-amyloid 1-42 (Abeta42) and cerebrospinal fluid total Tau. We found that patients with plasma beta carotene levels below the 25th percentile had 55% reduced ratios of Abeta40/Tau and 51% reduced ratios of Abeta 40/Abeta 42 compared with patients in the highest quartile. Mean Tau concentrations in the lowest quartile of plasma beta-carotene levels were 74% higher compared with the highest quartile of plasma beta-carotene levels. Thus, we could demonstrate an statistically significant association between beta carotene levels in plasma and neurochemical markers in the cerebrospinal fluid of Alzheimer's disease patients.  相似文献   

4.
5.
Neurological outcomes of preterm infants with posthemorrhagic hydrocephalus are among the worst in newborn medicine. There remains no consensus regarding the diagnosis or treatment of posthemorrhagic hydrocephalus, and the pathological pathways leading to the adverse neurological sequelae are poorly understood. In the current study, we developed an innovative approach to simultaneously identify potential diagnostic markers of posthemorrhagic hydrocephalus and investigate novel pathways of posthemorrhagic hydrocephalus-related neurological disability. Tandem multi-affinity fractionation for specific removal of plasma proteins from the hemorrhagic cerebrospinal fluid samples was combined with high resolution label-free quantitative proteomics. Analysis of cerebrospinal fluid obtained from infants with posthemorrhagic hydrocephalus demonstrated marked differences in the levels of 438 proteins when compared with cerebrospinal fluid from age-matched control infants. Amyloid precursor protein, neural cell adhesion molecule-L1, neural cell adhesion molecule-1, brevican and other proteins with important roles in neurodevelopment showed profound elevations in posthemorrhagic hydrocephalus cerebrospinal fluid compared with control. Initiation of neurosurgical treatment of posthemorrhagic hydrocephalus resulted in resolution of these elevations. The results from this foundational study demonstrate the significant promise of tandem multi-affinity fractionation-proteomics in the identification and quantitation of protein mediators of neurodevelopment and neurological injury. More specifically, our results suggest that cerebrospinal fluid levels of proteins such as amyloid precursor protein or neural cell adhesion molecule-L1 should be investigated as potential diagnostic markers of posthemorrhagic hydrocephalus. Notably, dysregulation of the levels these and other proteins may directly affect ongoing neurodevelopmental processes in these preterm infants, providing an entirely new hypothesis for the developmental disability associated with posthemorrhagic hydrocephalus.  相似文献   

6.
Alzheimer's disease (AD) affects millions of persons worldwide. Earlier detection and/or diagnosis of AD would permit earlier intervention, which conceivably could delay progression of this dementing disorder. In order to accomplish this goal, reliable and specific biomarkers are needed. Biomarkers are multidimensional and have the potential to aid in various facets of AD such as diagnostic prediction, assessment of disease stage, discrimination from normally cognitive controls as well as other forms of dementia, and therapeutic efficacy of AD drugs. To date, biomarker research has focused on plasma and cerebrospinal fluid (CSF), two bodily fluids believed to contain the richest source of biomarkers for AD. CSF is the fluid surrounding the central nervous system (CNS), and is the most indicative obtainable fluid of brain pathology. Blood plasma contains proteins that affect brain processes from the periphery, as well as proteins/peptides exported from the brain; this fluid would be ideal for biomarker discovery due to the ease and non-invasive process of sample collection. However, it seems reasonable that biomarker discovery will result in combinations of CSF, plasma, and other fluids such as urine, to serve the aforementioned purposes. This review focuses on proteins and peptides identified from CSF, plasma, and urine that may serve as biomarkers in AD.  相似文献   

7.
The cerebrospinal fluid (CSF) is a specific ultrafiltrate of plasma, which surrounds the brain and spinal cord. The study of its proteins and their alteration may yield useful information on several neurological diseases. By using various electrophoretic separation techniques, several CSF proteins have been identified derived from plasma or from brain. Different one-dimensional methods, such as agarose gel electrophoresis and isoelectric focusing, are of similar value in identifying the non-specific oligoclonal bands, which are mainly helpful in the diagnosis of multiple sclerosis and other inflammatory diseases. Isoelectric focusing has a greater resolution than other one-dimensional methods, and it yields additional data about disease-associated proteins occurring in Alzheimer's disease, Huntington's chorea and amyotrophic lateral sclerosis. Silver-stained two-dimensional gels provide more information about the complex protein composition of CSF, particularly about proteins produced in the brain, such as apolipoprotein E and neuron-specific enolase. For the detection of oligoclonal antibodies, the investigation of protein changes revealed by Parkinson's disease, schizophrenia and Creutzfeldt—Jakob disease, and the analysis of CSF immune complexes, two-dimensional electrophoresis has a greater sensitivity.  相似文献   

8.
Dysregulation of calcium signaling has been causally implicated in brain aging and Alzheimer's disease. Mutations in the presenilin genes (PS1, PS2), the leading cause of autosomal dominant familial Alzheimer's disease (FAD), cause highly specific alterations in intracellular calcium signaling pathways that may contribute to the neurodegenerative and pathological lesions of the disease. To elucidate the cellular mechanisms underlying these disturbances, we studied calcium signaling in fibroblasts isolated from mutant PS1 knockin mice. Mutant PS1 knockin cells exhibited a marked potentiation in the amplitude of calcium transients evoked by agonist stimulation. These cells also showed significant impairments in capacitative calcium entry (CCE, also known as store-operated calcium entry), an important cellular signaling pathway wherein depletion of intracellular calcium stores triggers influx of extracellular calcium into the cytosol. Notably, deficits in CCE were evident after agonist stimulation, but not if intracellular calcium stores were completely depleted with thapsigargin. Treatment with ionomycin and thapsigargin revealed that calcium levels within the ER were significantly increased in mutant PS1 knockin cells. Collectively, our findings suggest that the overfilling of calcium stores represents the fundamental cellular defect underlying the alterations in calcium signaling conferred by presenilin mutations.  相似文献   

9.
Proteomic technologies are widely used to understand the molecular mechanism of Parkinson’s disease (PD) and to develop biomarkers for its early diagnosis. The differential expression patterns of brain, cerebrospinal fluid and blood proteins of patients or chemically induced animal models are used to identify protein fingerprints for developing diagnostic and therapeutic strategies for PD. A number of differentially expressed proteins associated with energy metabolism, oxidative stress, signal transduction, electron transport and detoxification pathways are identified using proteomic strategies. Proteomics immensely contributed to the detection of qualitative and quantitative changes of expressed proteins and their post-translational modifications. An update on proteomics-driven research for developing early biomarkers and understanding the molecular aspects of PD, along with their translational snags, challenges and future possibilities, are discussed in this review.  相似文献   

10.
Brain aging is characterized by a progressive decline of the cognitive and memory functions. It is becoming increasingly clear that protein phosphorylation and, in particular, the activity of the calcium-phospholipid-dependent protein kinase C (PKC) may be one of the fundamental cellular changes associated with memory function. PKC is a multigene family of enzymes highly expressed in brain tissues. The activation of kinase C is coupled with its translocation from the cytosol to different intracellular sites and recent studies have demonstrated the key role played by several anchoring proteins in this mechanism. PKC-phosphorylating activity appears to be impaired during senescence at brain level in a strain-dependent fashion in rodents. Whereas the levels of the various isoforms do not show age-related alterations, the enzyme translocation upon phorbol-ester treatment is deficitary among all strains investigated. Anchoring proteins may contribute to this activation deficit. We discuss also modifications of the PKC system in Alzheimer's disease that may be related to pathological alterations in neurotransmission. A better insight of the different factors controlling brain-PKC activation may be important not only for elucidating the molecular basis of neuronal transmission, but also for identifying new approaches for correcting or even preventing age-dependent changes in brain function.  相似文献   

11.
Phosphorylation on tyrosine, threonine and serine residues represents one of the most important post-translational modifications and is a key regulator of cellular signaling of multiple biological processes that require a strict control by protein kinases and protein phosphatases. Abnormal protein phosphorylation has been associated with several human diseases including Alzheimer's disease (AD). One of the characteristic hallmarks of AD is the presence of neurofibrillary tangles, composed of microtubule-associated, abnormally hyperphosphorylated tau protein. However, several others proteins showed altered phosphorylation levels in AD suggesting that deregulated phosphorylation may contribute to AD pathogenesis. Phosphoproteomics has recently gained attention as a valuable approach to analyze protein phosphorylation, both in a quantitative and a qualitative way. We used the fluorescent phosphospecific Pro-Q Diamond dye to identify proteins that showed alterations in their overall phosphorylation in the hippocampus of AD vs. control (CTR) subjects. Significant changes were found for 17 proteins involved in crucial neuronal process such as energy metabolism or signal transduction. These phosphoproteome data may provide new clues to better understand molecular pathways that are deregulated in the pathogenesis and progression of AD.  相似文献   

12.
Amyotrophic lateral sclerosis is the most common form of motor neuron disease in adult patients and characterized by progressive paralysis. The wobbler mouse (phenotype WR, genotype wr/wr) is an established animal model of human motor neuron disease and is characterized by a large variety of cellular abnormalities including muscular atrophy. In analogy to recent proteomic studies of cerebrospinal fluid and spinal cord, we have used here fluorescence difference in-gel electrophoresis to analyze global changes in the skeletal muscle proteome from WR versus normal mice. Relative concentrations of 21 proteins were found to be increased and 3 proteins were decreased. Mass spectrometric analysis identified these proteins to be associated with key metabolic pathways, the contractile apparatus, intermediate filaments and the cellular stress response. Drastically increased levels of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase were confirmed by immunoblotting and this finding agrees with the idea of an oxidative-to-glycolytic shift in disease-related muscular atrophy. The establishment of novel disease-specific biomarkers of motor neuron disease might be helpful in the design of improved diagnostic tools and the identification of novel therapeutic targets.  相似文献   

13.
Lipid peroxidation in neurodegeneration: new insights into Alzheimer's disease   总被引:10,自引:0,他引:10  
Imbalances of oxidative homeostasis and lipid peroxidation have been revealed as important factors involved in neurodegenerative disorders such as Alzheimer's disease. The brains of patients with Alzheimer's disease contain increased levels of lipid-peroxidation products such as 4-hydroxy-2-nonenal or acrolein, and enhanced lipid peroxidation can also be detected in cerebrospinal fluid and plasma from such patients. Recent research revealed that the interplay of transition metals, amyloid-beta peptide and lipid peroxidation might be responsible for increased oxidative stress and cell damage in this disease. In particular, the contrasting roles of amyloid-beta peptide, as a possible transition metal-chelating antioxidant for lipoproteins and a pro-oxidant when aggregated in brain tissue, has been the focus of discussion recently. In this context, lipid peroxidation has to be seen as an important part of the pathophysiological cascade in Alzheimer's disease, and its measurement in body fluids might serve as a therapy control for Alzheimer's disease and other neurodegenerative diseases.  相似文献   

14.
The α-mannosidase activity in human frontal gyrus, cerebrospinal fluid and plasma has been analyzed by DEAE-cellulose chromatography to investigate the origin of the α-mannosidase activity in cerebrospinal fluid (CSF). The profile of α-mannosidase isoenzymes obtained in CSF was similar to that in the frontal gyrus but different from that in human plasma. In particular the two characteristic peaks of lysosomal α-mannosidase, A and B, which have a pH-optimum of 4.5 and are found in human tissues, were present in both the frontal gyrus and CSF. In contrast the majority of α-mannosidase activity in human plasma was due to the so called intermediate form, which has a pH-optimum of 5.5. The results suggest that the intermediate form of α-mannosidase in plasma does not cross the blood–brain barrier and that the α-mannosidase activity present in the cerebrospinal fluid is of lysosomal type and of brain origin. Thus the α-mannosidase activity in cerebrospinal fluid might mirror the brain pathological changes linked to neurodegenerative disorders such as Parkinson's disease.  相似文献   

15.
With the rationale that the neuropathological similarities between scrapie and Alzheimer's disease reflect convergent pathological mechanisms involving altered gene expression, we set out to identify molecular events involved in both processes, using scrapie as a model to study the time course of these changes. We differentially screened a cDNA library constructed from scrapie-infected mice to identify mRNAs that increase or decrease during disease and discovered in this way two mRNAs that are increased in scrapie and Alzheimer's disease. These mRNAs were subsequently shown by sequence analysis to encode apolipoprotein E and cathepsin D (EC 3.4.23.5). Using in situ hybridization and immunocytochemistry to define the cellular and anatomic pathology of altered gene expression, we found that in both diseases the increase in apolipoprotein E and cathepsin D mRNAs and proteins occurred in activated astrocytes. In scrapie, the increase in gene expression occurred soon after the amyloid-forming abnormal isoform of the prion protein has been shown to accumulate in astrocytes. In Alzheimer's disease, the increased expression of cathepsin D also occurred in association with beta-amyloid. These studies reveal some of the molecular antecedents of neuropathological changes in scrapie and Alzheimer's disease and accord new prominence to the role of astrocytes in neurodegenerative conditions.  相似文献   

16.
Towards a high resolution separation of human cerebrospinal fluid   总被引:4,自引:0,他引:4  
Human cerebrospinal fluid is an ultrafiltrate of plasma that is largely produced by the choroid plexus. It consists of a mixture of anorganic salts, various sugars, lipids and proteins from the surrounding brain tissues. The predominant proteins in cerebrospinal fluid are isoforms of serum albumin, transferrin and immunoglobulins, representing more than 70% of the total protein amount. A rough overview of the protein compounds of human cerebrospinal fluid including their respective concentrations is given by Blennow et al. [Eur. Neurol. 33 (1993) 129]. In contrast, the aim of this work is to display the detailed protein composition of CSF by two-dimensional gel electrophoresis and to identify both high and low concentrated proteins using different mass spectrometry techniques. This extensive overview of proteins in human cerebrospinal fluid will be highly relevant for clinical research. Furthermore, the comparison of 2D gels will help to analyze the standard protein variability in CSF of healthy persons and detect specific protein variations of patients with various neurological diseases (e.g., Alzheimer's disease, Huntington's chorea). Sample preparation for two-dimensional gel electrophoresis must include concentration and desalting steps such as precipitation and ultrafiltration due to the high amount of salts, sugars and lipids and the low total amount of protein of 0.3-0.7 microg/microl present in human CSF. Up to now we were able to identify more than 480 spots from suchlike generated 2D gels using MALDI- and ESI-mass spectrometry.  相似文献   

17.
A novel pituitary protein, designated as 7B2, recently purified in our laboratory was measured using a specific radioimmunoassay in conjunction with immuno-affinity extraction, in cerebrospinal fluid (CSF) and in plasma obtained from normal volunteers. The mean concentrations of immunoreactive (IR)-7B2 were 2154 pg/ml in CSF and 29 pg/ml in plasma. Studies by SDS-poly-acrylamide gel electrophoresis revealed that both CSF IR-7B2 and plasma IR-7B2 have an apparent molecular weight of around 20,000-21,000 as previously observed in various rat tissues. IR-7B2 was also measured in various brain regions obtained from control subjects and patients with Alzheimer's disease. IR-7B2 was widely distributed in the human brain, with the highest concentrations in substantia nigra and caudate. IR-7B2 brain concentrations were found to be similar between control subjects and patients with Alzheimer's disease. Gel permeation chromatography of extracts of various brain regions revealed two major peaks with apparent molecular weights of 45,000-50,000 and 11,000-16,000 in hypothalamus, caudate, frontal cortex, hippocampus, putamen and locus coeruleus, and only one peak with an apparent molecular weight of 14,000-16,000 in substantia nigra and globus pallidus. These data suggest that this novel pituitary protein may play a role of consequence perhaps as a neurotransmitter or as a neuromodulator in the human central nervous system.  相似文献   

18.
Inflammation is a key pathological hallmark of Alzheimer's disease (AD), although its impact on disease progression and neurodegeneration remains an area of active investigation. Among numerous inflammatory cytokines associated with AD, IL-1β in particular has been implicated in playing a pathogenic role. In this study, we sought to investigate whether inhibition of IL-1β signaling provides disease-modifying benefits in an AD mouse model and, if so, by what molecular mechanisms. We report that chronic dosing of 3xTg-AD mice with an IL-1R blocking Ab significantly alters brain inflammatory responses, alleviates cognitive deficits, markedly attenuates tau pathology, and partly reduces certain fibrillar and oligomeric forms of amyloid-β. Alterations in inflammatory responses correspond to reduced NF-κB activity. Furthermore, inhibition of IL-1 signaling reduces the activity of several tau kinases in the brain, including cdk5/p25, GSK-3β, and p38-MAPK, and also reduces phosphorylated tau levels. We also detected a reduction in the astrocyte-derived cytokine, S100B, and in the extent of neuronal Wnt/β-catenin signaling in 3xTg-AD brains, and provided in vitro evidence that these changes may, in part, provide a mechanistic link between IL-1 signaling and GSK-3β activation. Taken together, our results suggest that the IL-1 signaling cascade may be involved in one of the key disease mechanisms for AD.  相似文献   

19.
20.
The discovery and reliable detection of markers for neurodegenerative diseases have been complicated by the inaccessibility of the diseased tissue- such as the inability to biopsy or test tissue from the central nervous system directly. RNAs originating from hard to access tissues, such as neurons within the brain and spinal cord, have the potential to get to the periphery where they can be detected non-invasively. The formation and extracellular release of microvesicles and RNA binding proteins have been found to carry RNA from cells of the central nervous system to the periphery and protect the RNA from degradation. Extracellular miRNAs detectable in peripheral circulation can provide information about cellular changes associated with human health and disease. In order to associate miRNA signals present in cell-free peripheral biofluids with neurodegenerative disease status of patients with Alzheimer''s and Parkinson''s diseases, we assessed the miRNA content in cerebrospinal fluid and serum from postmortem subjects with full neuropathology evaluations. We profiled the miRNA content from 69 patients with Alzheimer''s disease, 67 with Parkinson''s disease and 78 neurologically normal controls using next generation small RNA sequencing (NGS). We report the average abundance of each detected miRNA in cerebrospinal fluid and in serum and describe 13 novel miRNAs that were identified. We correlated changes in miRNA expression with aspects of disease severity such as Braak stage, dementia status, plaque and tangle densities, and the presence and severity of Lewy body pathology. Many of the differentially expressed miRNAs detected in peripheral cell-free cerebrospinal fluid and serum were previously reported in the literature to be deregulated in brain tissue from patients with neurodegenerative disease. These data indicate that extracellular miRNAs detectable in the cerebrospinal fluid and serum are reflective of cell-based changes in pathology and can be used to assess disease progression and therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号