首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Formin proteins are nucleators of actin filaments and regulators of the microtubule cytoskeleton. As such, they play important roles in the development of yeast and other fungi. We show here that AgBnr2, a homologue of the ScBnr1 formin from the filamentous fungus Ashbya gossypii, localizes to the spindle pole body (SPB), the fungal analogue of the centrosome of metazoans. This protein plays an important role in the development of the typical needle-shaped spores of A. gossypii, as suggested by several findings. First, downregulation of AgBNR2 causes defects in sporangium formation and a decrease in the total spore number. Second, a fusion of AgBNR2 to GFP that is driven by the native AgBNR2 promoter is only visible in sporangia. Third, AgBnr2 interacts with a AgSpo21, a sporulation-specific component of the SPB. Furthermore, we provide evidence that AgBnr2 might nucleate actin cables, which are connected to SPBs during sporulation. Our findings add to our understanding of fungal sporulation, particularly the formation of spores with a complex, elongated morphology, and provide novel insights into formin function.  相似文献   

4.
The hemiascomycete Ashbya gossypii develops a mycelium. Nutritional stress leads to its differentiation into sporangia. These generate spores. In parallel, the yellow pigment riboflavin is produced. Intracellularly accumulated riboflavin, made visible as a bright green fluorescence, was observed in only 60 % of the hyphal cells. For the remaining 40 %, it was unclear whether these cells simply export riboflavin or its biosynthesis remains down-regulated in contrast to the accumulating cells. The approach followed in this work was to convert the hyphae into protoplasts by enzymatic degradation of the cell wall. Afterwards, the protoplasts were sorted by fluorescence-activated cell sorting on the basis of riboflavin accumulation. When a reporter strain expressing lacZ under the control of the most important riboflavin biosynthesis promoter, RIB3, was used, green protoplasts were found to have more than tenfold greater reporter activity than hyaline protoplasts. This was true on the basis of total protein as well as on the basis of hexokinase specific activity, a marker for constitutive expression. These results allow the conclusion that hyphal cells of A. gossypii differ in phenotype regarding riboflavin overproduction and accumulation.  相似文献   

5.
An oxalate-resistant strain of Ashbya gossypii was naturally isolated from spores grown on an oxalate-containing medium, and its medium was optimized to improve riboflavin production. Riboflavin production by the resistant strain was three-fold higher than that by the wild-type organism when grown in flask cultures. Medium optimization increased the riboflavin production by the resistant strain to 5 g l−1, which was five-fold higher than that obtained by the wild-type strain. The productivity was reproduced in a 3-l bioreactor. During the early growth phase, the specific activity of isocitrate lyase in the oxalate-resistant strain was slightly higher than that in the wild-type strain. Proteomic analysis of the oxalate-resistant strain revealed that the expression of aldose reductase and cobalamin-independent methionine synthase decreased significantly. This is the first report that describes the natural isolation of a riboflavin producer using an antimetabolite-containing medium to enhance the riboflavin production level. This method should also be useful for improving the productivity of other bioproducts since it does not require any mutations or genetic modifications of the microorganism.  相似文献   

6.
7.
The inactivation of Bacillus thuringiensis spores and spores treated with two protectants, one proteinaceous and the other a commercial product, Shade, at wavelengths of the near-ultraviolet and visible spectra and at 254 nm is described. Determination of the inactivating wavelengths may be used to establish an efficient sunlight protective system for B. thuringiensis when used as a microbial insecticide.  相似文献   

8.
The heat resistance of spores of 11 bacterial species is shown to correlate with the average decrease in volume of the protoplasm of spores that occurs during sporulation and that is measured from the stage in the development of the forespore at which the cortex can first be observed.  相似文献   

9.
10.
Induced resistance of cultivated Gossypium to its exotic, agricultural pests is well studied but little is known about whether native cottons respond to damage by endemic herbivore populations. This study examined induced responses of Gossypium australe to its most abundant folivore, Bucculatrix gossypii. Prior damage did not affect the number of new mines initiated. Survival of miners on damaged, young leaves and cotyledons was reduced compared with survival on young leaves and cotyledons of undamaged plants. However, the induced resistance was not systemic; survival of miners on older, undamaged leaves of damaged seedlings was not different from survival on older leaves of undamaged controls. This localized induced resistance did not produce an overdispersed distribution of either mines or successful mines. On the contrary, the distributions tended towards clumped, although they were not statistically distinguishable from random. Although a localized induced response affected miner survival, no effects on behaviour were observed.  相似文献   

11.
The causes of Bacillus spore resistance remain unclear. Many structures including a highly compact envelope, low hydration of the protoplast, high concentrations of Ca-chelated dipicolinic acid, and the presence of small acid-soluble spore proteins seem to contribute to resistance. To evaluate the role of internal protoplast composition and hydration, spores of Bacillus subtilis were produced at different osmotic pressures corresponding to water activities of 0.993 (standard), 0.970, and 0.950, using the two depressors (glycerol or NaCl). Sporulation of Bacillus subtilis was slower and reduced in quantity when the water activity was low, taking 4, 10, and 17 days for 0.993, 0.970, and 0.950 water activity, respectively. The spores produced at lower water activity were smaller and could germinate on agar medium at lower water activity than on standard spores. They were also more sensitive to heat (97 degrees C for 5-60 min) than the standard spores but their resistance to high hydrostatic pressure (350 MPa at 40 degrees C for 20 min to 4 h) was not altered. Our results showed that the water activity of the sporulation medium significantly affects spore properties including size, germination capacity, and resistance to heat but has no role in bacterial spore resistance to high hydrostatic pressure.  相似文献   

12.
13.
Two low-molecular-weight basic proteins, termed A and B proteins, comprise about 15% of the protein of dormant spores of Bacillus megaterium. Irradiation of intact dormant spores with ultraviolet light results in covalent cross-linking of the A and B proteins to other spore macromolecules. The cross-linked A and B proteins are precipitated by ethanol and can be solubilized by treatment with deoxyribonuclease (75%) or ribonuclease (25%). Irradiation of complexes formed in vitro between deoxyribonucleic acid (DNA) or ribonucleic acid and a mixture of the low-molecular-weight basic proteins from spores also resulted in cross-linking of A and B proteins to nucleic acids. The dose-response curves for formation of covalent cross-links were similar for irradiation of both a protein-DNA complex in vitro and intact spores. However, if irradiation was carried out in vitro under conditions where DNA-protein complexes were disrupted, no covalent cross-links were formed. These data suggest that significant amounts of the low-molecular-weight basic proteins unique to bacterial spores are associated with spore DNA in vivo.  相似文献   

14.
Sporulation of Clostridium botulinum 113B in a complex medium supplemented with certain transition metals (Fe, Mn, Cu, or Zn) at 0.01 to 1.0 mM gave spores that were increased two to sevenfold in their contents of the added metals. The contents of calcium, magnesium, and other metals in the purified spores were relatively unchanged. Inclusion of sodium citrate (3 g/liter) in the medium enhanced metal accumulation and gave consistency in the transition metal contents of independent spore crops. In citrate-supplemented media, C. botulinum formed spores with very high contents of Zn (approximately 1% of the dry weight). Spores containing an increased content of Fe (0.1 to 0.2%) were more susceptible to thermal killing than were native spores or spores containing increased Zn or Mn. The spores formed with added Fe or Cu also appeared less able to repair heat-induced injuries than the spores with added Mn or Zn. Fe-increased spores appeared to germinate and outgrow at a higher frequency than did native and Mn-increased spores. This study shows that C. botulinum spores can be sensitized to increased thermal destruction by incorporation of Fe in the spores.  相似文献   

15.
A set of mutants was generated by targeted deletion of the hsdR loci of two type I restriction modification systems (RMS) identified in Bacillus licheniformis DSM13. Single as well as double knock-outs resulted in strains being readily transformable with plasmids isolated from Bacilli. Introduction of shuttle plasmids isolated from Escherichia coli was routinely possible when the double mutant B. licheniformis MW3 (ΔhsdR1, ΔhsdR2) was used in transformation experiments. Growth and secretion of extracellular enzymes were not affected in any of the mutants. Thus, along with an optimized transformation protocol, this study makes available an urgently needed transformation system for this industrially exploited species. This work is dedicated to Prof. Dr. Hans Jürgen Rehm on the occasion of his 80th birthday.  相似文献   

16.

Background

Ashbya gossypii is an industrially relevant microorganism traditionally used for riboflavin production. Despite the high gene homology and gene order conservation comparatively with Saccharomyces cerevisiae, it presents a lower level of genomic complexity. Its type of growth, placing it among filamentous fungi, questions how close it really is from the budding yeast, namely in terms of metabolism, therefore raising the need for an extensive and thorough study of its entire metabolism. This work reports the first manual enzymatic genome-wide re-annotation of A. gossypii as well as the first annotation of membrane transport proteins.

Results

After applying a developed enzymatic re-annotation pipeline, 847 genes were assigned with metabolic functions. Comparatively to KEGG’s annotation, these data corrected the function for 14% of the common genes and increased the information for 52 genes, either completing existing partial EC numbers or adding new ones. Furthermore, 22 unreported enzymatic functions were found, corresponding to a significant increase in the knowledge of the metabolism of this organism. The information retrieved from the metabolic re-annotation and transport annotation was used for a comprehensive analysis of A. gossypii’s metabolism in comparison to the one of S. cerevisiae (post-WGD – whole genome duplication) and Kluyveromyces lactis (pre-WGD), suggesting some relevant differences in several parts of their metabolism, with the majority being found for the metabolism of purines, pyrimidines, nitrogen and lipids. A considerable number of enzymes were found exclusively in A. gossypii comparatively with K. lactis (90) and S. cerevisiae (13). In a similar way, 176 and 123 enzymatic functions were absent on A. gossypii comparatively to K. lactis and S. cerevisiae, respectively, confirming some of the well-known phenotypes of this organism.

Conclusions

This high quality metabolic re-annotation, together with the first membrane transporters annotation and the metabolic comparative analysis, represents a new important tool for the study and better understanding of A. gossypii’s metabolism.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-810) contains supplementary material, which is available to authorized users.  相似文献   

17.
18.
Turgeon N  Laflamme C  Ho J  Duchaine C 《Plasmid》2008,60(2):118-124
Only a small number of studies have measured the plasmid copy number (PCN) variation during bacterial growth. Besides, information about the PCN in spores is still rare. In this work, we utilized a real-time PCR assay to evaluate the PCN of four different plasmids in Bacillus cereus. The PCN was measured in spores as well as during germination, active bacterial growth, and sporulation. Plasmid stability was also evaluated to ensure that plasmid loss does not affect the accuracy of the PCN measurement. We demonstrated that the PCN of low and high copy number plasmids varies with growth phase as well as culture media over B. cereus life cycle. The PCN was minimum during the germination and maximum during the stationary growth phase for all plasmids tested. We also demonstrated that the use of antibiotic in the culture media is not enough to ensure stable inheritance in spores of plasmids carrying antibiotic resistance genes. Moreover, we revealed that the PCN in spores is related to the PCN during endospores formation. Therefore, the plasmid partitioning during sporulation is not influenced by the unequal-size of the forespores and the mother cells, even for a plasmid distributed randomly.  相似文献   

19.
We investigated the migration of multiple nuclei in hyphae of the filamentous fungus Ashbya gossypii. Three types of cytoplasmic microtubule (cMT)-dependent nuclear movements were characterized using live cell imaging: short-range oscillations (up to 4.5 μm/min), rotations (up to 180° in 30 s), and long-range nuclear bypassing (up to 9 μm/min). These movements were superimposed on a cMT-independent mode of nuclear migration, cotransport with the cytoplasmic stream. This latter mode is sufficient to support wild-type-like hyphal growth speeds. cMT-dependent nuclear movements were led by a nuclear-associated microtubule-organizing center, the spindle pole body (SPB), which is the sole site of microtubule nucleation in A. gossypii. Analysis of A. gossypii SPBs by electron microscopy revealed an overall laminar structure similar to the budding yeast SPB but with distinct differences at the cytoplasmic side. Up to six perpendicular and tangential cMTs emanated from a more spherical outer plaque. The perpendicular and tangential cMTs most likely correspond to short, often cortex-associated cMTs and to long, hyphal growth-axis–oriented cMTs, respectively, seen by in vivo imaging. Each SPB nucleates its own array of cMTs, and the lack of overlapping cMT arrays between neighboring nuclei explains the autonomous nuclear oscillations and bypassing observed in A. gossypii hyphae.  相似文献   

20.
The first ~10% of spores released from sporangia (early spores) during Bacillus subtilis sporulation were isolated, and their properties were compared to those of the total spores produced from the same culture. The early spores had significantly lower resistance to wet heat and hypochlorite than the total spores but identical resistance to dry heat and UV radiation. Early and total spores also had the same levels of core water, dipicolinic acid, and Ca and germinated similarly with several nutrient germinants. The wet heat resistance of the early spores could be increased to that of total spores if early spores were incubated in conditioned sporulation medium for ~24 h at 37°C (maturation), and some hypochlorite resistance was also restored. The maturation of early spores took place in pH 8 buffer with Ca(2+) but was blocked by EDTA; maturation was also seen with early spores of strains lacking the CotE protein or the coat-associated transglutaminase, both of which are needed for normal coat structure. Nonetheless, it appears to be most likely that it is changes in coat structure that are responsible for the increased resistance to wet heat and hypochlorite upon early spore maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号