首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interactions of NaCl and CaCl2 with the sea urchin embryo coat protein hyalin were investigated. Endogenous protein tryptophan fluorescence was enhanced by almost 45% in the presence of 200mM NaCl while 1mM CaCl2 reversed this effect and brought the intensity of fluorescence back close to that of the native protein. Half-maximal concentrations of 53 and 0.32mM were determined for NaCl and Ca+2, respectively. Hyalin conformation, as measured by circular dichroic spectroscopy, was altered by NaCl and CaCl2 in a fashion parallel to the effects of these salts on tryptophan fluorescence. Sodium chloride disrupted hyalin secondary structure while CaCl2 affected the return of hyalin to its native conformation. The interactions of NaCl and CaCl2 with hyalin were not modulated by MgCl2. These results suggest a role for CaCl2 in stabilizing hyalin against the disruptive effects of the high concentration of NaCl present in sea water.  相似文献   

2.
Production of an extracellular enzyme complex (carrageenase) was studied by examining cell-free fluids from cultures of a marine Cytophaga, 1k-C783, growing on different media. Among artificial sea water salts, only NaCl and MgCl2 were utilized by the organism to produce carrageenase. The minimal concentrations of suitable combinations of NaCl and MgCl2 were found to be 0.05 M NaCl plus 0.25 M MgCl2, and 0.15 M NaCl plus 0.15 M MgCl2. KCl and CaCl2 did not have any role in carrageenase production in ZoBell 2216 E broth medium. Carrageenase was synthesized continuously within the resting cells and was released from the cells as well as in the growing cells, when nutrient had been supplied.  相似文献   

3.
The effects of bivalent cations on cytochrome b5 reduction by NADH:cytochrome b5 reductase and NADPH:cytochrome c reductase were studied with the proteinase-solubilized enzymes. Cytochrome b5 reduction by NADH:cytochrome b5 reductase was strongly inhibited by CaCl2 or MgCl2. When 1.2 microM-cytochrome b5 was used, the concentrations of CaCl2 and MgCl2 required for 50% inhibition (I50) were 8 and 18 mM respectively. The inhibition was competitive with respect to cytochrome b5. The extent of inhibition by CaCl2 or MgCl2 was much higher than that by KCl or other alkali halides. In contrast, cytochrome b5 reduction by NADPH:cytochrome c reductase was extremely activated by CaCl2 or MgCl2. In the presence of 5 mM-CaCl2, the activity was 24-fold higher than control when 4.4 microM-cytochrome b5 was used. The magnitude of activation by CaCl2 was 2-3-fold higher than that by MgCl2. The activation by these salts was much higher than that by KCl, indicating that bivalent cations play an important role in this activation. The mechanisms of inhibition and activation by bivalent cations of cytochrome b5 reduction by these two microsomal reductases are discussed.  相似文献   

4.
The binding assay of prolactin (PRL) to the receptor in the rabbit mammary gland was carried out with varying concentrations of NaCl, KCl, CaCl2, MgCl2, glycerol, glucose, sucrose and urea. The agents did not affect the binding capacity. The ionic bond-breaking agents (NaCl and KCl) had little effect on changes in the association rate constant (k+1) of PRL binding to the receptor and the dissociation rate constant (k-1) of bound PRL. The inclusion of other agents changed the k+1 and the k-1. Among the agents examined, chaotropic salts (CaCl2 and MgCl2) inhibited the binding of PRL greatly, and were the most effective in decreasing the k+1. Both hydrogen- and hydrophobic bonds are involved in the interaction between PRL and the receptor. The data suggest that hydrophobic bonding is primarily an important force participating in the binding of PRL to its receptor.  相似文献   

5.
Salts are present in most amorphous biomaterials such as dried or frozen solid foods, plant seeds, and bacterial spores, and in some pharmaceutical formulations. However, knowledge of how salts modulate the physical properties of amorphous solid sugars, a major component in these systems, is lacking. We have used phosphorescence of the triplet probe erythrosin B (Ery B) to monitor molecular mobility in amorphous sucrose films (dried against P(2)O(5)) containing the salts NaCl, MgCl(2), CaCl(2), NaAcetate, Na(3)Citrate, NaH(2)PO(4), or Na(2)HPO(4) at a mole ratio of 0.2:1 (salt/sucrose). All the salts examined, except NaH(2)PO(4), significantly increased the phosphorescence lifetime of Ery B over the temperature range from 5 to 100 degrees C. This increase is due to a reduction in the rate of collisional quenching of the triplet state due to interactions with the matrix, indicating that these salts decreased the matrix molecular mobility. NaAcetate, Na(3)Citrate, and Na(2)HPO(4) decreased mobility more than NaCl, CaCl(2), or MgCl(2), perhaps due to specific hydrogen bonding interactions between the anion and sucrose. Systematic variations in the probe emission lifetime across the excitation and emission bands at 25 degrees C indicate that there are sites of different mobilities within amorphous solid sucrose; this dynamic site heterogeneity was enhanced in the presence of the divalent cationic salts MgCl(2) and CaCl(2). These results suggest that salts may play a significant role in modulating the mobility, and thus the long-term stability, of amorphous biological matrixes.  相似文献   

6.
AIMS: The fate of Listeria monocytogenes Scott A, was studied in broth, at different a(w)s (by adding NaCl or KCl from 0.0 to 1.4 mol l(-1)), pHs (from 4.0 to 7.3 by adding lactic acid), and nisin concentrations (from 0 to 100 IU ml(-1)). METHODS AND RESULTS: Increasing salt and nisin concentrations and decreasing pH resulted in lower growth rates and extended lag phases. At pH 4.5 no growth was observed while in presence of nisin and/or 1 mol l(-1) salts of both kinds, L. monocytogenes Scott A was inactivated. Equal-molar concentrations of NaCl or KCl (similar a(w)), exerted similar effects against L. monocytogenes in terms of lag phase duration, growth or death rate. The growth boundaries of L. monocytogenes Scott A at 5 degrees C were also estimated by growth/no growth turbidity data, modeled by logistic polynomial regression. The concordance of logistic models, were 99.6 and 99.8% for NaCl and KCl, respectively. CONCLUSIONS: The growth interfaces derived by both NaCl and KCl models were almost identical. Hence, NaCl can be replaced by KCl without risking the microbiological safety of the product. Increasing nisin concentrations markedly affected the interface resulting in a more inhibitory environment for L. monocytogenes Scott A. Low to medium salt concentrations (0.3-0.7 mol l(-1) of either NaCl or KCl) provided a protective effect against inhibition of L. monocytogenes Scott A by nisin. SIGNIFICANCE AND IMPACT OF THE STUDY: Modelling the growth boundaries not only contributes to the development of safer food by providing useful data, but can also be used to study interactions between factors affecting initiation of growth of pathogenic micro-organisms.  相似文献   

7.
1. The effects of morganic ions, electrolyte concentration, and pH on the appearance and volume of the isolated rat liver nucleus have been studied. Nuclei were isolated by differential centrifugation in a buffered salt-sucrose mixture at pH 7.1. Nuclear volumes were determined photographically. 2. In solutions of NaCl, of KCl, and in potassium phosphate buffers the nuclear volume decreased markedly with an increase in concentration from 0.001 M to 0.05 M but remained essentially constant with further increase in concentration to 1.0 M. The effects of CaCl(2) and MgCl(2) differed from those of NaCl and KCl in that a smaller volume was obtained in concentrations less than 0.15 M, and in the case of CaCl(2) an increase in volume was obtained in more concentrated solutions. The volume changes are considered to be due primarily to ionic effects on the nuclear colloids rather than to osmotic behavior. 3. Treatment of nuclei with DNAase prevented the characteristic volume changes resulting from ion effects, suggesting the importance of DNA in nuclear volume changes. 4. The optical changes in isolated nuclei in various concentrations of KCl, NaCl, CaCl(2), MgCl(2), and in potassium phosphate buffers as observed under phase contrast illumination are described. CaCl(2) gave the most marked nuclear changes from the conditions in the uninjured cell and caused shrinkage and granulation in 0.001 M concentration. The effects of CaCl(2) were also manifested in 0.88 M sucrose, in mixtures with monovalent salts, and in serum. Changes in nuclear volume and optical appearance which occurred in salt solutions and in 0.1 N HCl were readily reversible. 5. Nuclear volume remained constant between pH 8.91 and 5.12 and decreased in more acid solutions. 6. Sucrose had no appreciable osmotic effect, and in hyperosmotic solution. (0.88 M) nuclei showed swelling and rupture comparable to that in distilled water. 7. The results are considered in relation to the requirements of nuclear isolation media. 8. Rat liver nuclei isolated in a buffered salt-sucrose medium by differential centrifugation exhibited a pattern of size distribution similar to that of fixed nuclei but were of considerably larger volume. The ratio of the volumes of the peak frequencies of the two chief size groups was 1:1.9.  相似文献   

8.
The influence of NaCl, KCl, CaCl2, and MgCl2 on the binding of prolactin (PRL) to its receptor was investigated. The salts were dissolved in a metallic ion-free binding buffer and had biphasic effects on changes in the association rate constant (k+1) of PRL binding, depending on their concentrations: there was an increase in the k+1 at lower concentrations and a decrease at higher concentrations. The dissociation rate of bound PRL was unaffected. NaCl at any concentration did not change the binding capacity. Bivalent salts, at higher than 25 mM, increased the capacity about 1.6-fold as compared to the 0 mM control. By cross-linking the PRL-receptor complex, the band of a molecular weight (Mr) 34,500 receptor could always be detected on the autoradiogram. An Mr 78,000 receptor appeared only after incubation with bivalent salts. Data indicate that the binding of PRL to an Mr 78,000 receptor is directly regulated by bivalent cation.  相似文献   

9.
An experimental investigation established the effect of the presence of inorganic salts on the foam separation of Pseudomonas fluorescens and of Bacillus subtilis var. niger (B. globigii) from aqueous suspension by use of a cationic surfactant. For P. fluorescens, 5.0 mueq/ml of NaCl, KCl, Na(2)SO(4), K(2)SO(4), CaCl(2), CaSO(4), MgCl(2), or MgSO(4) produced increases in the cell concentration in the residual suspension (not carried into the foam) from 2.9 x 10(5) up to 1.6 x 10(6) to 2.8 x 10(7) cells per milliliter (initial suspensions contain from 3.3 x 10(7) to 4.8 x 10(7) cells per milliliter). The exceptional influence of magnesium was overcome by bringing the cells into contact first with the surfactant and then the salt. For B. subtilis, the presence of 5.0 mueq/ml of any of the eight salts increased the residual cell concentration by one order of magnitude from 1.2 x 10(4) to about 4.0 x 10(5) cells per milliliter. This occurred regardless of the sequence of contact as long as the surfactant contact period was sufficient. The presence of salts increased collapsed foam volumes with P. fluorescens and decreased collapsed foam volumes with B. subtilis.  相似文献   

10.
Large enhancement of canine taste responses to sugars by salts   总被引:1,自引:0,他引:1       下载免费PDF全文
The effects of changed ionic environments on the canine taste responses to sugars were examined by recording the activity of the chorda tympani nerve. a) The responses to various sugars were greatly enhanced by the presence of salts having monovalent cations such as Na+, K+, choline+, or Tris+. The responses to sugars were suppressed by high concentrations of salts. (b) The presence of 100 mM NaCl in fructose solution did not affect the maximal response and changed the Hill constant for the concentration-response relationship from 1.3 to 2.4. (c) CaCl2 greatly enhanced the response to fructose, while MgCl2 exhibited practically no effect. The presence of 20 mM CaCl2 in fructose solution changed the Hill constant from 1.2 to 2.4. (d) CaCl2 suppressed the responses to 0.5 M sugars except for fructose and sucrose and enhanced the responses to all sugars examined at 1 M. In the glucose response, the slope of the concentration-response curve was increased by the presence of CaCl2. Here the curve in the absence of CaCl2 intersected with that in the presence of CaCl2, indicating that CaCl2 suppressed the response to glucose of low concentrations and enhanced that of high concentrations. (e) The enhancement of the sugar responses by salts was not simply explained in terms of ionic permeability at the apical membranes of taste cells. The enhanced and suppressed effects of salts on the sugar responses were interpreted in terms of the cooperativity between receptor molecules for sugars.  相似文献   

11.
Ribulose 1,5-bisphosphate carboxylase-oxygenase (RuBisCO) from the halophilic cyanobacterium, Aphanothece halophytica, dissociates into catalytic core (large subunit A oligomer) and small subunit B under low ionic strength during sucrose density gradient centrifugation. Supplementation of KCl, NaCl, or K2SO4 ( [I] = 0.3 M) partly prevents the dissociation, the preventive effect of divalent cation salts such as MgCl2 and CaCl2 being more effective than monovalent cation salts. RuBisCO with its higher-plant-type molecular form can be isolated from the cyanobacterial extracts using gradient medium containing 0.3 M KCl, 20 mM MgCl2, and 10 mM CaCl2. The isolated enzyme contains large subunit A and small subunit B in a molar ratio of approximately 1:1, estimated from the densitometric scanning of Coomassie blue-stained gels. During the second sucrose density gradient centrifugation to remove minor contaminants, a small amount of subunit B is depleted from the holoenzyme. Determination of the molecular weight by equilibrium centrifugation and electron microscopic observation have confirmed that the cyanobacterial RuBisCO has an A8B8-type structure. The enzyme activity per se is found to be sensitive to concentrations of salts, and small subunit B is obligatory for the enzyme catalysis. It has been shown that the more the enzyme activity is inhibited by salts, the tighter the association of subunit B becomes. It is likely that the active enzyme retains the loose conformational structure to such an extent that the dissociable release of subunit B from the holoenzyme in vivo is not allowed.  相似文献   

12.
Protein fractions of a higher-oligomer (H), (alphabeta)(2)-diprotomer (D) and alphabeta-protomer (P) were separated from dog kidney Na(+)/K(+)-ATPase solubilized in the presence of NaCl and KCl. Na(+)/K(+)-dependent interconversion of the oligomers was analysed using HPLC at 0 degrees C. With increasing KCl concentrations, the content or amount of D increased from 27.6 to 54.3% of total protein, i.e. DeltaC(max) = 26.7%. DeltaC(max) for the sum of D and H was equivalent to the absolute value of DeltaC(max) for P, regardless of the anion present, indicating that K(+) induced the conversion of P into D and/or H, and Na(+) had the opposite effect. When enzymes that had been denatured to varying degrees by aging were solubilized, DeltaC(max) increased linearly with the remaining ATPase activity. The magnitude of the interconversion could be explained based on an equilibrium of D <==> 2P, assuming 50-fold difference in the K(d) between KCl and NaCl, and coexistence of unconvertible oligomers, which comprised as much as 39% of the eluted protein. Oligomeric interconversion, determined as a function of the KCl or NaCl concentration, showed K(0.5)s of 64.8 microM and 6.50 mM for KCl and NaCl, respectively, implying that oligomeric interconversion was coupled with Na(+)/K(+)-binding to their active transport sites.  相似文献   

13.
On the basis of a previous report on the occurrence of water-soluble cyanophycin (CGP, cyanophycin granule polypeptide) in a recombinant strain of Escherichia coli expressing the cyanophycin synthetase (CphA) of Desulfitobacterium hafniense published by others, the conditions of its production were investigated in this study. Although the incubation temperature, aeration level, and NaCl concentration during cultivation had effects on the in vivo production of water-soluble CGP, it could be isolated as a major variant irrespective of the cultivation conditions. The occurrence of the soluble variant was also not dependent on the E. coli host or on the origin of cphA. Furthermore, it was shown that water-insoluble CGP can be in vitro solubilized to extents of up to about 80% (w/w) in solutions of different inorganic salts such as LiCl, NaCl, KCl, RbCl, KBr, MgCl(2), or CaCl(2). Evidence was obtained that the salt ions bind tightly to CGP. If the ions were not removed from the salt solution by dialysis or dilution, the CGP remained stable in solution. This method to solubilize water-insoluble CGP could also be applied to high concentrations of the polymer. CGP that remained insoluble after the first treatment could only marginally be solubilized in following treatments. The polydisperse CGP molecules were solubilized to the same extent over the whole molecular weight range with no preference of a particular molecular weight.  相似文献   

14.
The apparent maximum corticosterone binding (B max) with rat brain cytosol and the apparent dissociation constant of this steroid-receptor binding (Kd) estimated with a Scatchard plot was 2.9 X 10(-13) moles/mg cytosol protein and 4.0 X 10(-9) M, respectively. When increasing amounts of CaCl2 or MgCl2 up to 5.0 mM were added, a specific [3H] corticosterone binding increased 4-fold by CaCl2 at concentrations of 1.0-2.0 mM and 1.5-fold by MgCl2 at concentrations of 0.5-5.0 mM. The addition of MnCl2 and KCl did not affect this binding. Binding of corticosterone with rat brain cytosol receptor(s) were decreased by increasing amounts of EGTA and complete inhibition was observed at concentrations equal to and greater than 2.5 mM. Inhibition of this binding by EDTA was less than by EGTA. Either theophylline or dibutyryl cyclic AMP had no effect on this binding.  相似文献   

15.
Salt induced dissociation of protamine, poly(L-lysine) and poly(L-arginine) from DNA was measured by relative light scattering at theta = 90 degrees and/or centrifugation. Dissociation of histones from DNA was studied using relative light scattering and intrinsic tyrosine fluorescence. Protamine was dissociated from DNA at 0.15 M MgCl2 (ionic strength mu = 0.45) or 0.53 M NaCl (mu = 0.53) based on light scattering data and at approximately 0.2 M MgCl2 (mu = 0.6) or 0.6 M NaCl based on centrifugation data. NaCl induced dissociation of poly(Lys) or poly(Arg) from natural DNAs measured by light scattering did not depend on the guanine plus cytosine content. To dissociate poly(Arg) from DNA higher ionic strength using NaCl, MgCl2, or CaCl2, similar ionic strength using NaClo4, and lower ionic strength using Na2SO4 was needed then to dissociated poly(Lys). Both the decrease in light scattering and the enhancement of tyrosine fluorescence of chromatin occurred between 0.5 and 1.5 M NaCl when histones were dissociated.  相似文献   

16.
The divalent cations magnesium, calcium and manganese, and the monovalent cation, potassium, but not sodium, enhance binding of [125I]iodo-porcine follicle-stimulating hormone to follicle-stimulating hormone (FSH) receptors in membranes of porcine granulosa cells via an increase in the apparent number of binding sites. The objective of the present studies was to determine if increased binding of FSH to its receptor causes increased adenylyl cyclase activity in response to FSH, or conversely, if enhancement of the cyclase or one of its components causes increased binding, or if the two processes are modulated independently. MgCl2 and CaCl2, which both enhance binding in intact cells and in cell-free membrane preparations, had opposite effects on cyclase-MgCl2 stimulatory, CaCl2 inhibitory. In isotonic NaCl, MgCl2 did not enhance binding, but it did increase FSH-stimulated production of cyclic adenosine 3',5'-monophosphate (cAMP). NaCl did not enhance FSH binding and it did not enhance cyclase in cell-free membranes, but it did increase FSH- and forskolin-stimulated cAMP production in intact cells. In intact cells, maximally effective concentrations of MgCl2 and KCl were additive in enhancing cAMP production whereas the effects of NaCl and KCl together were synergistic. The results indicate that although cationic effects on FSH binding are not causally related to effects on cyclase, the cationic microenvironment of the granulosa cell membrane is critical to both FSH receptor and adenylyl cyclase functions.  相似文献   

17.
The apparent absorbancy of suspensions of stationary-phase cells of Streptococcus lactis strain 354/07 decreased immediately after being placed in fresh media. This optical effect also occurred in defined mixtures of buffer glucose and KCl. CaCl(2) caused the absorbancy to increase. CaCl(2) and KCl together had about the same effect as KCl alone. SrCl(2) could replace CaCl(2), but it was less effective by a factor of 10(2). MnCl(2), MgCl(2), and NaCl were without effect. The absorbancy did not change when cells were first killed by p-chloromercuribenzoate or when the reaction was carried out at 0 C. The rate of the reaction was dependent on temperature and concentration of glucose and salts. Gradient centrifugation suggests that this optical effect was caused by change in the refractive index of the test organism rather than by change in volume. Nine other organisms representing four additional genera gave the same optical effect as S. lactis 354/07. Two other organisms reacted feebly whereas another strain of S. lactis reacted in the opposite way, the absorbancy of the suspension increasing instead of decreasing. Spores of Bacillus cereus did not respond.  相似文献   

18.
In vitro chemotactic responses of infective third-stage larvae (L3) of Brugia pahangi to NaCl, Na2HPO4, KCl, K2HPO4, MgCl2 and CaCl2 were assessed. Compared to deionized water as a control, 200?mm NaCl and 100?mm Na2HPO4 significantly attracted L3 (P?相似文献   

19.
AIMS: Isolation and screening of extreme halophilic archaeon producing extracellular haloalkaliphilic protease and optimization of culture conditions for its maximum production. METHODS AND RESULTS: Halogeometricum sp. TSS101 was isolated from salt samples and screened for the secretion of protease on gelatin and casein plates containing 20% NaCl. The archaeon was grown aerobically in a 250 ml flask containing 50 ml of (w/v) NaCl 20%; MgCl(2) 1%; KCl 0.5%; trisodium citrate 0.3%; and peptone 1%; pH 7.2 at 40 degrees C on rotary shaker. The production of enzyme was investigated at various pH, temperatures, NaCl concentrations, metal ions and different carbon and nitrogen sources. The partially purified protease had activity in a broad pH range (7.0-10.0) with optimum activity at pH 10.0 and a temperature (60 degrees C). The enzyme was thermostable and retained 70% initial activity at 80 degrees C. Maximum protease production occurred at 40 degrees C in a medium containing 20% NaCl (w/v) and 1% skim milk powder after 84 h in shaking culture. Enzyme secretion was observed at a broad pH range of 7.0-10.0. Addition of CaCl(2) (200 mmol) to the culture medium enhanced the production of protease. Protein rich flours proved to be cheap and good alternative source for enzyme production. Different osmolytes were tested for the growth and production of haloalkaliphilc protease and found that betaine and glycerol enhanced growth without secretion of the protease. Immobilization studies showed that whole cells immobilized in 2% alginate beads were stable up to 10 batches and able to secrete the protease, which attained maximum production within 60 h under shaking conditions. CONCLUSIONS: Halogeometricum sp. TSS101 secreted an extracellular haloalkaliphilic and thermostable protease. The optimum conditions required for maximum production are 20% NaCl, 1% skim milk powder and temperature at 40 degrees C. Addition of CaCl(2) (200 mmol) enhanced the enzyme production. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of haloalkaliphilic protease. SIGNIFICANCE AND IMPACT OF THE STudy: The low cost protein rich flours were used as an alternative carbon and nitrogen sources for enzyme production. Immobilization of halophilic cells in alginate beads can be used in continuous production of halophilic enzyme. The halophilic and thermostable protease from Halogeometricum sp. TSS101 is good source for industrial applications and can be a suitable source for preparation of fish sauce.  相似文献   

20.
The spent seawater medium of 4-day-old-cultures of the filamentous marine fungus Leptosphaeria albopunctata had a high viscosity after the fungus was collected by high-speed centrifugation. Microscopic examination of uncentrifuged mycelium suspended in India ink revealed that the viscosity resulted from capsular material. These capsules became disassociated from the mycelium during centrifugation. Precipitation of the medium of centrifuged cultures with 95% ethyl alcohol yielded a highly anthrone-positive polysaccharide material, composed of large amounts of glucose and minute amounts of mannose. Time course studies of the nutritional requirements for capsular polysaccharide production revealed that the capsular material was produced in large amounts, and on a wide variety of sugars, during the period of rapid growth, but was quickly degraded and presumably remetabolized in older cultures. The amount of capsular material produced was enhanced by NaCl concentrations above that of artificial seawater, and KCl could be substituted for NaCl. The salts MgCl(2) and CaCl(2) were also required for capsule production by L. albopunctata, although growth was obtained in cultures without added amounts of these constituents. The possible role of these salts in the metabolism of the fungus is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号