首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Optimal allocation of leaf nitrogen maximizes daily CO2 assimilation for a given leaf nitrogen concentration. According to the hypothesis of optimization, this condition occurs when the partial derivative of assimilation rate with respect to leaf nitrogen concentration is constant. This hypothesis predicts a linear increase of assimilation rate with leaf nitrogen concentration under constant conditions. Plants of Amaranthus powellii Wats. were grown at 1, 5, 10, or 45 millimolar nitrate to obtain leaves with different nitrogen concentrations. Assimilation rate at 340 microbar CO2/bar, stomatal conductance, CO2- and light-saturated net photosynthetic rate, the initial slope of the CO2 response of photosynthesis, ribulose-1,5′-bisphosphate carboxylase activity, and phosphoenolpyruvate carboxylase activity were linearly related to estimated or actual leaf nitrogen concentration. The data are consistent with the optimal use of leaf nitrogen. This hypothesis and the hypothesis of optimal stomatal conductance were combined to determine the relationship between conductance and leaf nitrogen concentration. The slope of conductance versus leaf nitrogen concentration was not significantly different than the slope predicted by the combination of the two hypotheses. Stomatal conductance was linearly related to leaf nitrogen in the field and the slope decreased with lower xylem pressure potentials in a manner consistent with the hypotheses. Finally, apparent maximum stomatal aperture of isolated abaxial epidermal strips was linearly related to leaf nitrogen suggesting stomatal conductance and assimilation rate are controlled in parallel by leaf nitrogen concentration or some factor correlated with leaf nitrogen.  相似文献   

2.
Growth Rate, Photosynthesis and Respiration in Relation to Leaf Area Index   总被引:3,自引:0,他引:3  
BUNCE  JAMES A. 《Annals of botany》1989,63(4):459-463
This work examined three possible explanations of growth rateresponses to leaf area index (LAI) in which growth rate perunit of ground area (crop growth rate, CGR) increased to a plateaurather than decreasing above an optimum LAI at which all lightwas intercepted. Single leaf photosynthetic measurements, andwhole plant 24 h photosynthesis and respiration measurementswere made for isolated plants and plants in stands using Amaranlhushybridus, Chenopodium album, and two cultivars of Glycine maxgrown at 500 and 1000 µimol m–2 S–1 photosyntheticphoton flux density at 25 °C. CGR, relative growth rate(RGR), and LAI were determined from 24 h carbon dioxide exchangeand leaf area and biomass measurements. Respiration increasedrelative to photosynthesis with crowding in A. hybridus andthere was an optimum LAI for CGR. In contrast, the ratio ofrespiration to photosynthesis was constant across plant arrangementin the other species and they had a plateau response of CGRto LAI. Neither increased leaf photosynthetic capacity at highLAI nor a large change in biomass compared to the change inLAI could account for the plateau responses. It was calculatedthat maintenance respiration per unit of biomass decreased withdecreasing RGR in C. album and G. max, but not A. hybridus,and accounted for the plateau response of CGR to LAI. Sincesimilar decreases in maintenance respiration per biomass atlow RGR have been reported for several other species, a constantratio of respiration to photosynthesis may occur in more speciesthan constant maintenance respiration per unit of biomass. Amaranlhus hybridus L., Chenopodium album L., Glycine max L Merr, soybean, photosynthesis, respiration, growth, leaf area index  相似文献   

3.
Maize plants (Zea mays L.) were cultured with nutrient solutioncontaining 0.001 or 0.5 mM orthophosphate (Pi). Effects of lowphosphate (low-P) nutrition on growth, leaf phosphate status,photosynthesis, and carbon partitioning were investigated. Withlow-P treatment, the fresh weight of aerial parts decreasedby about 40% by 24 days after planting. Detailed studies ofthe effects of low-P treatment on the other characteristicsof maize leaves-were done using the middle part of the thirdleaf, counting from the base. Low-P treatment had almost noeffect on specific leaf weight or soluble protein content measured13 to 21 days after planting. Low-P treatment decreased Chicontent slightly (by 15% 19 days after planting). Twenty onedays after planting, low-P treatment had greatly decreased thelevels of leaf acid extractable Pi (by 77%) and photosynthesisrates (by 68%). The detrimental effects of low-P treatment onthe rates of photosynthesis and the amounts of acid extractablePi became progressively greater with time. There was a strongcorrelation between levels of leaf acid extractable Pi and ratesof photosynthesis. The minimum level of Pi necessary to sustainthe maximum photosynthesis rate was 0.6 mmol m–2. Belowthis minimum content of Pi, the rate of photosynthesis decreasedsharply with decreasing Pi. To investigate the direct effectof Pi depletion on photosynthate partitioning at equivalentrates of photosynthesis, the rates in controls were reducedto almost the same as those in 18 or 19 day old low-P plants(about 50% of those in controls) by lowering light intensityand/ or ambient CO2 concentration. The data clearly indicatesthat low-P treatment had a direct effect in lowering photosynthatepartitioning into starch. Starch mobilization during the nightwas also inhibited under low-P conditions. (Received January 7, 1991; Accepted March 5, 1991)  相似文献   

4.
Net photosynthetic rates per unit ground area for plant standsof Solanum melongena L. var. esculentum (aubergine) and Amaranthuscaudatus L. var. edulis (grain amaranth) were measured over10 min intervals in an airtight, glass, controlled-environmentcabinet for a range of light flux densities provided by thediurnal variation in daylight. Light response curves for photosynthesisof stands, grown at ambient CO2 concentration, were definedat 400, 800 and 1200 vpm CO2. Light compensation points for these stands were around 20-30J m-2 s-1 and decreased slightly at higher CO2 concentrations.For aubergine, a C3 species, the short-term effects of CO2 enrichmentwere to increase the initial slope as well as the asymptoteof the light response curve, reducing light saturation at moderateto high light flux densities; but for amaranthus, a C4 species,saturation was less apparent and CO2 enrichment scarcely increasedphotosynthesis except at light flux densities above 150 J m-2s-1. The canopies intercepted 93-98% of incident light. The efficiencyof utilization of intercepted light in photosynthesis (µgCO2 J-1) increased from zero at the light compensation pointto a maximum at an optimum light flux density of about 100 Jm-2 s-1 (the optimum rose a little with CO2 enrichment) anddecreased slightly with further increase in light. Maximum utilizationefficiencies at 400 vpm CO2 were 8-9 µg CO2 J-1. Enrichmentto 1200 vpm did not affect the peak utilization efficiency ofthe C4 amaranthus, but increased that aubergine to 12·2µg CO2 J-1 (equivalent to some 14% when using the heatof combustion of plant dry matter to convert to the dimensionlessform). This is among the highest recorded efficiencies of lightutilization for stands, and relates to the exceptionally favourableenvironment, with optimal control of CO2 concentration, humidity,temperature, water supply and mineral nutrition.Copyright 1993,1999 Academic Press Amaranthus caudatus L. var. edulis, Solanum melongena L. var. esculentum, canopy photosynthesis, CO2 enrichment, light interception, light utilization, photosynthetic efficiency  相似文献   

5.
METIVIER  J. R.; DALE  J. E. 《Annals of botany》1977,41(6):1287-1296
Five cultivars of barley with widely differing grain nitrogencontents were compared. In the absence of exogenous nitratesupply plants grown from high nitrogen grain showed a more rapidleaf emergence, greater leaf size, especially of the first leaf,higher photosynthetic rate and greater total souble proteinand Fraction 1 protein content of the first leaf, than plantsgrown from low nitrogen grain. However, early supply of nitrateto plants grown from low nitrogen grain enabled these to performas well as those from grain with a high nitrogen content. Regressionanalysis showed that Fraction 1 content of the first leaf isclosely correlated with grain nitrogen which exerts a progressivelygreater effect on content of this protein as application ofexogenous nitrate is delayed. The more rapid photosyntheticrate of plants grown with high nitrogen, and the consequentgreater rate of dry matter accumulation, is attributable mainlyto effects of nitrogen availability on leaf area and much lessto effects on leaf protein.  相似文献   

6.
The contributions made by photosynthesis in the first leaf toseedling growth have been examined by a variety of methods includinginfra-red gas analysis and the use of 14CO2. The first leafis fully expanded by day 8 and maximal rates of photosynthesisare achieved about I day later. Up to day 8 growth of the seedlingsresults from the redistribution of seed reserves and once theseare exhausted growth is dependent upon the first leaf, beingreduced to very low levels if this is shaded. The second leafwhich begins to expand rapidly after day 10 is contributingto growth by day 14, and the contribution from the first leafbegins to decline after day 12. Apart from greatly reducing photosynthesis in treated leaves,shade also affects the development of photosynthetic capacity.When applied for 2 days or more from day 6, shade reduces thepeak level of carbon fixation achieved on days 9 and 10 by upto 35 per cent. It is shown that development of the first leafin terms of increased dry weight and photosynthetic capacity,is dependent on photosynthesis in the developing leaf itself.The mechanisms by which shading affects development are discussed.  相似文献   

7.
光强和施氮量对催吐萝芙木叶片生长及光合作用的影响   总被引:1,自引:0,他引:1  
通过不同光强(15%、40%和70%自然光强)和施氮量(15、30和60g/株)的盆栽试验,研究了不同光照强度和施氮量对催吐萝芙木(Rauvolfia vomitoria Afzel.)叶片生长和光合特性的影响。结果表明:光强和施氮量显著影响了催吐萝芙木叶片净光合速率(Pn)、气孔导度(Gs)、水分利用效率(WUE)、叶绿素含量(Chl)、比叶面积(SLA)和叶生物量比(LMR)(p〈0.01),Pn和Gs均随光强、施氮量的增加而增大,70%自然光强下叶片Pn和Gs显著高于15%和40%自然光强处理。总体而言,低光条件下,更有利于其叶绿素的合成,且施氮量对叶绿素含量的影响不大。低光处理和重度施氮量均有利于催吐萝芙木叶片SLA增大和叶生物量的分配,但实验中光强和施氮量处理并未引起催吐萝芙木叶绿素荧光参数Fv/Fm发生显著变化。光强和施氮量对催吐萝芙木叶片净光合速率(P)、气孔导度(G)、水分利用效率(WUE)等光合生理指标具有显著的交互作用(p〈0.05)。  相似文献   

8.
The relationships between photosynthesis, dry matter accumulationand translocation have been studied during the development ofthe first true leaf of cucumber. The leaf was grown in an irradianceof 50W m–2 photosynthetically active radiation for 10h–1 at 20 C and 2 g m–3 CO2. The maximum rate of net photosynthesis, on a leaf area basis,occured at full expansion. Photochemical efficiency, based onincident radiation, also increased up to this stage and wasrelated to the concentration of chlorophyll in the leaf. Darkrespiration and the light compensation point fell over the wholeperiod of leaf expansion. A carbon budget analysis showed that the rate of carbon accumulationin the leaf reached a peak at 70 percent expansion. The leafchanged from a net importer to a net exporter of carbon whenit was about 30 percent expanded. The rate of export increasedwith leaf expansion (and with net photosynthesis) and was twiceas high in the day an in the night at full expansion. At fullleaf expansion there was a reduction in the amount of starchlost overnight, and the carbon exported amounted to 80 per centof the daily net carbon fixed. Cucumber, Cumic satinu L., leaf development, photosynthesis, translocation, carbon budget, mineral content  相似文献   

9.
It has been shown recently that in spinach leaves (Spinacia oleracea) net photosynthesis and nitrate reduction are closely linked: when net photosynthesis was low because of stomatal closure, rates of nitrate reduction decreased (WM Kaiser, J Förster [1989] Plant Physiol 91: 970-974). Here we present evidence that photosynthesis regulates nitrate reduction by modulating nitrate reductase activity (NRA, EC 1.6.6.1). When spinach leaves were exposed to low CO2 in the light, extractable NRA declined rapidly with a half-time of 15 minutes. The inhibition was rapidly reversed when leaves were brought back to air. NRA was also inhibited when leaves were wilted in air; this inhibition was due to decreased CO2 supply as a consequence of stomatal closure. The modulation of NRA was stable in vitro. It was not reversed by gel filtration. In contrast, the in vitro inhibition of nitrate reductase (NR) by classical inhibitors such as cyanide, hydroxylamin, or NADH disappeared after removal of free inhibitors by gel filtration. The negative modulation of NRA in —CO2-treated leaves became manifest as a decrease in total enzyme activity only in the presence of free Mg2+ or Ca2+. Mg2+ concentrations required for observing half-maximal inhibition were about 1 millimolar. In the presence of EDTA, the enzyme activity was always high and rather independent of the activation status of the enzyme. NRA was also independent of the pH in the range from pH 7 to pH 8, at saturating substrate and Mg2+ concentrations. The apparent substrate affinities of NR were hardly affected by the in vivo modulation of NR. Only Vmax changed.  相似文献   

10.
Amaranthus hypochondriacus plants were grown under three photosynthetic photon flux densities (PPFD). Mature plants grown at full sunlight (38.8 mol m–2 d–1) had higher maximum net photosynthetic rate (PN) and significantly higher leaf trypsin inhibitor activity than plants that developed under lower PPFD (19.4 and 12.8 mol m–2 d–1). In contrast, seeds collected from plants fully exposed to sunlight showed the lowest activity of trypsin inhibitor, higher rate of germination and susceptibility to infection by Aspergillus niger.  相似文献   

11.
Rates of leaf initiation, emergence, and growth have been measuredduring the period between the production of one and of ten matureleaves on the primary shoot of Agropyron repens. There is aprogressive decline in the growth rate of successively formedleaves so that at the time of formation of the next leaf primordiumeach primordium is smaller than its predecessor at a comparablestage of development. There is also a trend towards a diauxicpattern of growth with a lag phase apparently coinciding withthe transition from apical to intercalary growth of the youngleaf. Up to the six-leaf stage the rate of leaf formation exceedsthe rate of emergence and leaf primordia accumulate on the shootapex. Thereafter the rate of emergence exceeds the rate of formation.These changes in rates of leaf formation and growth are interpretedin terms of competition for assimilates between expanding leavesand leaf primordia, and between the primary and axillary shootapices.  相似文献   

12.
采用营养液水培法,研究了施用不同浓度外源硅(0、0.5、1.0 mmol/L)对干旱胁迫(10%PEG、20%PEG)下烟草幼苗生长、叶片光合特性和生理指标的影响。结果表明:干旱胁迫严重抑制了烟草幼苗生长和光合作用,膜质稳定性降低和引起氧化应激反应;施用不同浓度外源硅有效改善了干旱胁迫下烟草幼苗生长,均表现为株高、叶面积、根系体积、根系干重和地上部干重等生长指标增加,提高叶绿素a、叶绿素b、叶绿素a+b和类胡萝卜素含量,显著提高净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)并降低胞间CO2浓度(Ci),膜质过氧化产物MDA含量显著降低,提高叶片含水量、膜稳定性系数和渗透调节物质(脯氨酸、可溶性糖)含量,显著提高SOD、POD和CAT等抗氧化酶活性,而且1.0 mmol/L Si处理对干旱胁迫下烟草幼苗生长和生理特性的影响显著优于0.5 mmol/L Si处理。以上结果说明,施用外源硅能提高干旱胁迫下烟草幼苗光合作用、抗氧化和渗透调节能力,缓解干旱胁迫对烟草幼苗的伤害,促进其生长。  相似文献   

13.
Duvatrienediol is a diterpene specifically occurred in tobacco plants and thought to be a precursor of tobacco aroma. Green tobacco leaves contained 0.2~1% of duvatrienediol per dry weight and it was corresponded to 30~60% of leaf surface lipid. Leaves on upper stalk position contained more of leaf surface lipid and duvatrienediol. In leaves on each stalk position, leaf surface lipid and duvatrienediol contents increased with leaf growth and decreased by over-maturation. Production of leaf surface lipid and duvatrienediol was affected by soil conditions or applied amount of nitrogen fertilizer. Both leaf surface lipid and duvatrienediol were decreased during curing of tobacco leaves, but the change in the latter was more drastic. Comparing to leaf surface lipid, changes in cytoplasmic lipid were less during growth and senescence of tobacco leaves.  相似文献   

14.
Lawlor, D. W., Boyle, F. A., Young, A. T., Keys, A. J. and Kendall,A. C. 1987. Nitrate nutrition and temperature effects on wheat:photosynthesis and photorespiration of leaves.—J. exp.Bot. 38: 393–408. Photosynthetic and photorespiratory carbon dioxide exchangeby the third leaf of spring wheat (Triticum aestivum cv. Kolibri),was analysed for plants grown at 13/10 °C (day/night temperature)and 23/18 °C with two rates of nitrate fertilization (abasal rate, — N, and a 4-fold larger rate, +N) and, insome experiments, with two photon fluxes. Net photosynthesiswas greatest at the time of maximum lamina expansion, and forleaves grown with additional nitrate. Maximum rate of photosynthesis,carboxylation efficiency and photochemical efficiency at maturitywere slightly decreased by nitrate deficiency but photosystemactivity was similar under all conditions. As leaves aged, photosynthesisand photochemical efficiency decreased; carboxylation efficiencydecreased more than photochemical efficiency particularly withbasal nitrate. Low oxygen increased the carboxylation and photochemicalefficiencies, and increased the maximum rate of assimilationby a constant proportion in all treatments. Photorespiration,measured by CO2 efflux to CO2-free air, by 14CO2 uptake, andfrom compensation concentration, was proportional to assimilationin all treatments. It was greater, and formed a larger proportionof net photosynthesis, when measured in warm than in cold conditionsbut was independent of growth conditions. Assimilation was relatedto RuBPc-o activity in the tissue. Relationships between photosynthesis,photorespiration and enzyme complement are discussed. Key words: Wheat, leaves, nitrate nutrition, temperature effect, photosynthesis, photorespiration  相似文献   

15.
Plants of barley were grown under controlled conditions andthe first or second leaves covered with tubular shades thusreducing the light intensity at the leaf surface to low levels.Expansion of the shaded leaves was not prevented, but appearanceof the next leaf but one and all subsequent leaves on the mainstemwas delayed by up to 3 days. Primordia of the first four leaveswere present in the dry grain. Shade treatment delayed slightlythe initiation of the eighth and subsequent leaves and transitionto the double ridge stage at the mainstem apex. Shading the first leaf caused a temporary reduction in the rateof dry-matter increase of plants, but after 14 days the ratewas similar to that of control plants. Smaller effects werefound when the second leaf was shaded. Dry-matter productionfollowed two logarithmic phases in the period prior to awn emergence,and rates for the whole plant and for plant parts were similarfor control and shaded plants. Thus, apart from the initialperturbation, shading had no effect on growth in terms of rateof dry-weight gain. Shade treatment did not affect weight per grain or numbers ofgrain per ear, but over-all yield of grain was significantlyreduced since shading delayed the appearance of tillers andalso reduced the number of tillers bearing grain. The effectof shade was especially marked on tillers originating on primarytillers. Similar qualitative effects on tiller development werefound in an experiment on wheat.  相似文献   

16.
Measurements of microclimate and photosynthesis of lucerne var.Europe were made in the field during the spring of 1976. Themaximum rate of canopy gross photosynthesis (14.3 g CO2 m–2h–1, I = ) was 2.5 times greater than that of S 24 perennialryegrass at the same LAI. This difference was due to differencesin individual leaf photosynthesis. The photosynthetic rate ofthe youngest fully expanded leaf of lucerne remained constantthroughout the experimental period at 3.6 g CO2 m–2 h–1(300 W m–2). Measurements of soil water potential profiles indicated thatlucerne extracted water from the soil to a depth of at least800 mm, with a region of maximum uptake between 400 and 600mm. This capability, with a moderate mean leaf resistance of460 s m–1, conferred a high assimilation efficiency onlucerne, with a mean water use efficiency of 34 g H2O lost pergram of carbohydrate assimilated, compared with 200 g H2O pergram of carbohydrate for S 24. Medicago sativa L, lucerne, photosynthesis, assimilation efficiency  相似文献   

17.
Effects of CO2 Enrichment on Four Poplar Clones. I. Growth and Leaf Anatomy   总被引:2,自引:0,他引:2  
The poplar clones Columbia River, Beaupre, Robusta and Raspaljehave been investigated under the present (350 µmol mol–1)and double the present (700 µmol mol–1) atmosphericCO2 concentration. Cuttings were planted in pots and were grownin open-top chambers inside a glasshouse for 92 d. The number of leaves, total length of stem, total leaf area,overall growth rate, total leaf, stem and root d. wt respondedpositively to increased CO2 but the leaf size and biomass allocationshowed no change with CO2 enrichment. Beaupre and Robusta showeda larger growth response than either Columbia River or Raspalje. The effects of CO2 enrichment were restricted to the early phaseof growth at the beginning of the growth season. Leaf cell numbers in all the clones were not affected by CO2enrichment. Leaf thickness was affected; this was mainly theresult of larger mesophyll cells and more extensive intercellularspaces. Poplar clones, CO2 enrichment, growth, leaf anatomy, leaf cell number  相似文献   

18.
Sodium application of 0.5 meq./liter to water-cultured Amaranthustricolor L. cv. Tricolor plants brought about a three-fold increasein dry matter production compared with those of plants deprivedof sodium. This increase was due to sodium itself and not toa supplementary effect of sodium on potassium shortage nor tothe accompanying anion. In sodium-sufficient plants, the totalnitrogen and potassium contents were lower and calcium, chlorophylland betacyanin contents were higher than in the deficient plants. (Received June 18, 1985; Accepted November 18, 1985)  相似文献   

19.
When the marine Chlorophycean flagellate Dunaliella tertiolecta Butcher was grown with short photoperiods of bright light, the use of ammonia rather than nitrate as a nitrogen source led to a 30 % reduction of the doubling time of cell matter. The cell cycle (onset of light to completion of cell division) was shortened by about 10% only. Ammonia-grown cells possessed a greater capacity for photosynthetic oxygen evolution at light saturation than did nitrate-grown cells; their content of ribulosediphosphate carboxylase was likewise greater. The faster growth of Dunaliella tertiolecta with ammonia may be partly a consequence of a general increase in net protein synthesis resulting in a greater content of photosynthetic enzymes.  相似文献   

20.
When a single, rooted leaf of dwarf bean (Phaseolus vulgaris,var. humilis Edogawa) was grown in a phosphate-deficient conditionin light, expansion of the leaf stopped earlier than the increasein the volume of the root. These results indicate that the useof the assimilate for leaf expansion stops early in comparisonto the transport of the assimilate to the roots, when the externalsupply of phosphate is discontinued. After transfer to the phosphate-deficientcondition, the photosynthetic capacity increased for severaldays, then decreased. On the 12th day after transfer, the photosyntheticcapacity reached its lowest level. When phosphate was addedto the roots at an early stage of phosphorus deficiency, photosynthesisshowed little recovery during the first 3 hr alter the addition,but it recovered largely between 3 and 48 hr. But, at a laterdeficient stage, it was restored largely during the first 3hr, as well as being maintained between 3 and 48 hr. This immediaterecovery of photosynthesis within 3 hr after the addition ofphosphate increased largely in spite of decreasing photosynthesisin the plants subjected to progressive phosphorus-deficientstress. (Received April 2, 1981; Accepted October 23, 1981)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号