首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cho MJ  Harper JE 《Plant physiology》1991,96(4):1277-1282
It was previously reported that the hypernodulating soybean (Glycine max [L.] Merr.) mutants, derived from the cultivar Williams, had higher root concentration of isoflavonoid compounds (daidzein, genistein, and coumestrol) than did Williams at 9 to 12 days after inoculation with Bradyrhizobium japonicum. These compounds are known inducers of nod genes in B. japonicum and may be involved in subsequent nodule development. The current study involving reciprocal grafts between NOD1-3 (hypernodulating mutant) and Williams showed that root isoflavonoid concentration and content was more than twofold greater when the shoot genotype was NOD1-3. When grafted, NOD1-3 shoots also induced hypernodulation on roots of both Williams and NOD1-3, while Williams shoots induced normal nodulation on both root genotypes. This shoot control of hypernodulation may be causally related to differential root isoflavonoid levels, which are also controlled by the shoot. In contrast, the nonnodulating characteristic of the NN5 mutant was strictly root controlled, based on reciprocal grafts. Delayed inoculation (7 days after planting) resulted in greater nodule numbers on both NOD1-3 and Williams, compared with a seed inoculation treatment. The nodulation pattern of grafted plants was independent of whether the shoot portion was derived from inoculated seed or uninoculated seed, when grafted at day 7 onto seedling roots derived from inoculated seed. This observation, coupled with the fact that no difference existed in nodule number of NOD1-3 and Williams until after 9 days from seed inoculation, indicated that if isoflavonoids play a role in differential nodulation of the hypernodulating mutant and the wild type, the effect is on advanced stages of nodule ontogeny, possibly related to autoregulation, rather than on initial infection stages.  相似文献   

2.
Cho MJ  Harper JE 《Plant physiology》1991,95(4):1106-1112
Although isoflavonoids are known to be inducers of nod genes in Bradyrhizobium japonicum, it was recently proposed that internal root levels of isoflavonoids may be important in nodule development on soybean (Glycine max [L.] Merr.). The hypernodulating soybean mutants were shown to accumulate higher root concentrations of isoflavonoid compounds (daidzein, genistein, and coumestrol) and to be more extensively nodulated than was the Williams parent when inoculated with B. japonicum. The hypernodulating mutants and the parent line, Williams, also showed decreased isoflavonoid concentrations and decreased nodule development if N was applied. The current study evaluated the effect of localized NO(3) (-) application on root isoflavonoid concentration and on nodulation in split-root systems of the Williams wild type and a hypernodulating mutant (NOD1-3). Nitrate application markedly decreased isoflavonoid concentrations in non-inoculated soybean roots. When roots were inoculated, nodule number, weight, and nitrogenase activity were markedly suppressed on the root-half receiving 5 millimolar NO(3) (-) compared with the other root-half receiving 0 millimolar NO(3) (-). High performance liquid chromatographic analyses of root extracts showed that the root-half receiving 5 millimolar NO(3) (-) was markedly lower in isoflavonoid concentrations in both soybean lines. This was partially due to the localized stimulatory effect of NO(3) (-) on root growth. The inoculated NOD1-3 mutant had higher isoflavonoid concentrations than did the Williams control in both the presence and absence of NO(3) (-). These results provide evidence that the site of N application primarily controls the site of nodulation inhibition, possibly through decreasing isoflavonoid levels. Although the effect of NO(3) (-) on nodule development and root isoflavonoid concentration was strongly localized, there was evidence that NO(3) (-) also resulted in a systemic effect on root isoflavonoids. The results are consistent with previous speculation that internal levels of root isoflavonoids may affect nodule development.  相似文献   

3.
Isoflavonoids (daidzein, genistein, and coumestrol) are involved in induction of nod genes in Bradyrhizobium japonicum and may be involved in nodule development as well. Abscisic acid (ABA) may also impact nodulation since ABA is reportedly involved in isoflavonoid synthesis. The current study was conducted to evaluate whether ABA plays a role in differential nodulation of a hypernodulated soybean (Glycine max L. Merr.) mutant and the Williams parent. Exogenous ABA application resulted in a decrease in nodule number and weight in both lines. Isoflavonoid concentrations were also markedly decreased in response to ABA application in both inoculated and noninoculated soybean roots. The inoculation treatment itself resulted in a marked increase in isoflavonoid concentrations of NOD1-3, regardless of ABA levels, while only slight increases occurred in Williams. The nodule numbers of both soybean lines across several ABA concentration treatments were highly correlated with the concentration of all three isoflavonoids. However, differences in internal levels of ABA between lines were not detected when grown in the absence of external ABA additions. It is concluded that differential nodule expression between the wild type and the hypernodulated mutant is not likely due to differential ABA synthesis.  相似文献   

4.
Since NO3 availability in the rooting medium seriously limits symbiotic N2 fixation by soybean (Glycine max [L.] Merr.), studies were initiated to select nodulation mutants which were more tolerant to NO3 and were adapted to the Midwest area of the United States. Three independent mutants were selected in the M2 generation from ethyl methanesulfonate or N-nitroso-N-methylurea mutagenized Williams seed. All three mutants (designated NOD1-3, NOD2-4, and NOD3-7) were more extensively nodulated (427 to 770 nodules plant−1) than the Williams parent (187 nodules plant−1) under zero-N growth conditions. This provided evidence that the mutational event(s) affected autoregulatory control of nodulation. Moreover, all three mutants were partially tolerant to NO3; each retained greater acetylene reduction activity when grown hydroponically with 15 millimolar NO3 than did Williams at 1.5 millimolar NO3. The NO3 tolerance did not appear to be related to an altered ability to take up or metabolize NO3, based on solution NO3 depletion and on in vivo nitrate reductase assays. Enhanced nodulation appeared to be controlled by the host plant, being consistent across four Bradyrhizobium japonicum strains tested. In general, the mutant lines produced less dry weight than the control, with root dry weights being more affected than shoot dry weights. The nodulation trait has been stable through the M5 generation in all three mutants.  相似文献   

5.
Two strains of Bradyrhizobium japonicum were evaluated with five commercial cultivars of soybean (Clark, Crauford, Davis, Centaur, and Nessen) and one hypernodulating mutant NOD1-3. The hypernodulating NOD1-3 produced 30–50 times the number of nodules of commercial cultivars either inoculated with B. japonicum strain USDA 123 or RCR 3409. Grafting of NOD1-3 shoots to Clark and Davis roots induced hypernodulation on roots of Clark and Davis but did not enhance nodulation when grafted onto the roots of Crauford, Centaur, and Nessen. In contrast, the shoots of Clark, Davis, Centaur and Nessen significantly inhibited nodule formation on the root of NOD1-3. However, Crauford shoots did not alter nodule formation on the roots of NOD1-3 as compared with self-grafts of NOD1-3. It appears that the shoot of NOD1-3 has the ability to alter autoregulatory control of nodulation of Clark and Davis cultivars, but not of Crauford, Centaur and Nessen. The results suggest that the regulation of nodulation in soybean cultivars Clark and Davis is controlled by the shoot factors, while the Crauford was root controlled. Reciprocal grafts between NOD1-3 and Centaur or Nessen indicate that both shoot and root factors are involved in regulation of nodulation. The results suggested that the regulation of nodulation did not depend on bradyrhizobial strains. The shoot control of hypernodulation may be causally related to differential root isoflavonoid levels, which are also controlled by shoot. Application of daidzein significantly enhanced the nodulation and nitrogenase activity of soybean cv. Clark. Root control of restricted nodulation of soybean cv. Centaur did not respond to the addition of daidzein in nutrient solution indicating that this character is not related to isoflavonoids. Therefore, autoregulation in Clark and Centaur plants may be separate events in legume–rhizobia symbiosis and regulated by different kinds of signals.  相似文献   

6.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

7.
Heron DS  Pueppke SG 《Plant physiology》1987,84(4):1391-1396
Double inoculation (15 h apart) of the soybean cultivar Williams with Bradyrhizobium japonicum I-110ARS reveals a rapid regulatory plant response that inhibits nodulation of distal portions of the primary root (M Pierce, WD Bauer 1984 Plant Physiol 73: 286-290). Only living, homologous rhizobia elicit the response. We conducted similar double inoculation experiments to test the hypothesis that this is a universal phenomenon in soybean symbioses. We investigated interactions of the cultivar McCall with the slow-growing strain Bradyrhizobium sp. 3185 (=3G4b16) and strains of the fast-growing soybean symbiont, Rhizobium fredii (USDA191 [Nod+ on McCall] and USDA257 [Nod on McCall]). Nodulation was not detectably inhibited when USDA257 was included in various combinations with an inoculum of USDA191. Strain USDA257 cohabited nodules with strain USDA191 when plants were inoculated sequentially with both strains, but USDA257 did not nodulate McCall when a sterile culture filtrate of USDA191 was added to USDA257 inoculum. There was only a slight inhibition of nodulation of distal portions of the primary root in double inoculation experiments with McCall and strain 3185. Because these results were unexpected, we repeated the experiments with Williams and strain I-110ARS. The response was similar to that observed in the McCall × 3185 interaction. Regulation of nodulation on the primary root thus appears to be variable and depend on strain X cultivar interactions.  相似文献   

8.
Wu S  Harper JE 《Plant physiology》1990,92(4):1142-1147
It was previously reported that three soybean (Glycine max [L.] Merr.) nodulation mutants (NOD1-3, NOD2-4, and NOD3-7) were partially tolerant to nitrate when nitrate was supplied simultaneously with inoculation at the time of transplanting. The current study evaluated the effect of short-term nitrate treatment on nitrogenase activity (C2H2 reduction per plant and per nodule weight) and on relative abundance of ureides when nitrate application was delayed until plants were 3 weeks old and nodules were fully developed. Nitrogenase activity of the mutants was similar to that of Williams after an initial 3-week growth period, prior to nitrate treatment. Application of 5 millimolar nitrate resulted in greater inhibition of nitrogenase activity in Williams than in the three mutants. NOD1-3 was most tolerant of nitrate among the mutants tested and showed the highest relative abundance of ureides. Although C2H2 reduction activity per plant for NOD1-3 was higher than for Williams in the presence of nitrate, C2H2 reduction activity per gram of nodules was lower for NOD1-3 than for Williams in the presence and absence of nitrate. Compared to Williams, NOD1-3 had higher nodule ureide concentration and had similar glutamine synthetase activity in nodule tissue, indicating its nodules have normal nitrogen assimilation pathways. Nitrate application resulted in ureide accumulation in nodule tissue as well as in all plant parts assayed. Unexpectedly, nitrate treatment also increased the rate of ureide degradative capacity of leaves in both NOD1-3 and Williams. The data confirmed that nitrogenase activity of the selected nodulation mutants was more, but still only partially, tolerant of nitrate compared with the Williams parent.  相似文献   

9.
A feedback mechanism which involves sensing of change in phloem N concentration has been proposed to control nodulation and dinitrogen fixation in the presence of external combined N. Whether this control is in response to a change in total N or in some specific signal compound(s) is not known. In the present study we reevaluated the hypothesis that control of nodulation and N2 fixation involves sensing of change in tissue N composition and attempted to identify potential signal molecule(s) involved. Two soybean (Glycine max [L.] Merr.) genotypes (Williams 82 and NOD1-3) differing in nodule number and tolerance to nitrate were germinated in sand trays. Seven-day-old seedlings were inoculated with a solution of Bradyrhizobium japonicum and grown for 28 days in growth chambers, using a hydroponic system with limited N supply to promote nodulation. Half of 28-day-old plants were treated with 15 mM NO3?, then control and treated plants were sampled at the onset of nitrogenase inhibition (24 h following NO3?, treatment) for evaluation of nitrogenase activity and tissue concentration of total N and of each individual free amino acid. Phenylisothiocyanate-(PITC) amino acid derivatives were separated and quantified using HPLC. The decline in nitrogenase activity following the short-term nitrate treatment was associated with a dramatic asparagine concentration increase in the shoot and an increase in nodule aspartate and glutamate in both genotypes. Asparagine concentration in the shoot increased 35 times from a barely detectable level of 95 to 3 327 nmol g?1 fresh weight in Williams 82, and more than tripled from 509 to 1 753 nmol g?1 fresh weight in NOD1-3. Increase in levels of free Asn and in total free amino acids in the shoot following the short-term nitrate treatment was more pronounced in Williams 82 than in its partially nitrate-tolerant mutant NOD1-3. These results indicate that the feedback control of nodule activity may involve sensing changes in shoot asparagine levels and/or products of its metabolism (aspartate and glutamate) in the nodule. These results also indicate that partial-nitrate tolerance of nodulation in the hypernodulated NOD1-3 mutant is associated with a lesser change in tissue N following nitrate treatment.  相似文献   

10.
Sheng C  Harper JE 《Plant physiology》1997,113(3):825-831
Grafting studies involving Williams 82 (normally nodulating) and NOD1-3 (hypernodulating) soybean (Glycine max [L.] Merr.) lines and Lablab purpureus were used to evaluate the effect of shoot and root on nodulation control and plant growth. A single- or double-wedge graft technique, with superimposed partial defoliation, was used to separate signal control from a photosynthate supply effect. Grafting of hypernodulated soybean shoots to roots of Williams 82 or L. purpureus resulted in increased nodule numbers. Grafting of two shoots to one root enhanced root growth in both soybean genotypes, whereas the nodule number was a function of shoot genotype but not of the photosynthetic area. In double-shoot, single-root-grafted plants, removing trifoliolate leaves from either Williams 82 or NOD1-3 shoots decreased root and shoot dry matter, attributable to decreased photosynthetic source. Concurrently, Williams 82 shoot defoliation increased the nodule number, whereas NOD1-3 shoot defoliation decreased the nodule number on both soybean and L. purpureus roots. It was concluded that (a) soybean leaves are the dominant site of autoregulatory signal production, which controls the nodule number; (b) soybean and L. purpureus have a common, translocatable, autoregulatory control signal; (c) seedling vegetative growth and nodule number are independently controlled; and (d) two signals, inhibitor and promoter, may be involved in controlling legume nodule numbers.  相似文献   

11.
nolX, a nod box-independent nodulation gene from the nitrogen-fixing symbiont, Sinorhizobium fredii, regulates cultivar-specific nodulation of soybean. Expression of this gene is triggered by isoflavonoid cues from host roots but is not mediated by a typical cis-acting nod box promoter. We have found that two isoflavonoids, daidzein and coumestrol, induce expression of a nolX-lacZ gene fusion at pH values between 5.5 and 8.5, with an optimum at 6.5. Expression of nolX is highly dependent on nutritional status but insensitive to salinity. Methionine and casamino acids, amendments that enhance expression of hrpF, a homologous gene from the plant pathogen Xanthomonas campestris biovar vesicatoria, have no and strongly negative effects, respectively, on expression of nolX. Growth of S. fredii on rhamnose, galactose, xylose, or myo-inositol as carbon source greatly elevates inducibility in comparison to a standard yeast extract-mannitol medium. None of the tested variables, however, released nolX from its dependence on isoflavonoids as inducers.  相似文献   

12.
Two strains of Bradyrhizobium japonicum wereevaluated with five commercial cultivars of soybean(Clark, Crauford, Davis, Centaur, and Nessen) and onehypernodulating mutant NOD1-3. The hypernodulatingNOD1-3 produced 30–50 times more nodules thancommercial cultivars either inoculated with B.japonicum strain USDA 123 or RCR 3409. The currentexperiments were extended to determine if therestricted nodulation of commercial cultivars could be overcome by grafting them to a hypernodulated shoot (NOD1-3). Grafting of NOD1-3 shoots to Clark and Davis roots induced hypernodulation on roots of Clark and Davis but did not enhance nodulation when grafted onto the roots of Crauford, Centaur, and Nessen. The shoots of Clark, Davis, Centaur and Nessen significantlyinhibited nodule formation on the root of NOD1-3,while Crauford shoots did not alter nodule formationon the roots of NOD1-3 as compared with self-grafts ofNOD1-3. It appears that the shoot of NOD1-3 has theability to alter autoregulatory control of nodulationof Clark and Davis cultivars, but did not withCrauford, Centaur and Nessen. The results suggestedthat the regulation of nodulation in soybean cultivarsClark and Davis is controlled by the shoot factors,while the Crauford was root controlled.Reciprocal-grafts between NOD1-3 and Centaur or Nessenindicate that both shoot and root factors involved inregulation of nodulation and the regulation ofnodulation did not depend on bradyrhizobial strains. Isoflavonoid analyses from extracts of grafted plantsshowed that NOD1-3 shoots had markedly higher rootisoflavonoid concentrations in roots of both Clark andNOD1-3. The shoot control of hypernodulation may becausally related to differential root isoflavonoidlevels, which are also controlled by the shoot. Thecurrent work was extended to investigate the effect ofapplication of an isoflavonoid (daidzein) on nodulationand nitrogen fixation of soybean cultivars Clark andCentaur as well as in vitro growth of Bradyrhizobium japonicum. Application of theisoflavonoid (daidzein) significantly enhanced thenodulation and nitrogenase activity of Clark but notof Centaur indicating that this character is notrelated to isoflavonoids. Therefore, autoregulationin Clark and Centaur plants may be separate events inlegume-rhizobia symbiosis and regulated by differentkinds of signals. Addition of daidzein to yeastmannitol broth medium promoted the growth of B.japonicum strain USDA 123 and RCR 3409. It seemsthat this compound is able to help the nodulation ofsoybean cv Clark by a Bradyrhizobium strain. Understanding the signaling pathways between rhizobiaand their host plants may allow modifications of thisinteraction to improve symbiotic performance.  相似文献   

13.
Pan  B.  Smith  D.L. 《Plant and Soil》2000,223(1-2):237-244
Genistein is the major root produced isoflavonoid inducer of nod genes in the symbiosis between B. japonicum and soybean plants. Reduction in the isoflavonoid content of the host plants has recently been suggested as a possible explanation for the inhibition of mineral nitrogen (N) on the establishment of the symbiosis. In order to determine whether genistein addition could overcome this inhibition, we incubated B. japonicum cells (strain 532C) with genistein. Mineral N (in the form of NH4NO3) was applied at 0, 20 and 100 kg ha-1. The experiments were conducted on both a sandy-loam soil and a clay-loam soil. Preincubation of B. japonicum cells with genistein increased soybean nodule number and nodule weight, especially in the low-N-containing sandy-loam soil and the low N fertilizer treatment. Plant growth and yield were less affected by genistein preincubation treatments than nitrogen assimilation. Total plant nitrogen content was increased by the two genistein preincubation treatments at the early flowering stage. At maturity, shoot and total plant nitrogen contents were increased by the 40 μM genistein preincubation treatment at the sandy-loam soil site. Total nitrogen contents were increased by the 20 μM genistein preincubation treatment only at the 0 and 20 kg ha-1 nitrate levels in clay-loam soil. Forty μM genistein preincubation treatment increased soybean yield on the sandy-loam soil. There was no difference among treatments for 100-seed weight. The results suggest that preincubation of B. japonicum cells with genistein could improve soybean nodulation and nitrogen fixation, and at least partially overcome the inhibition of mineral nitrogen on soybean nodulation and nitrogen fixation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Summary After random Tn5 mutagenesis of the stem-nodulating Sesbania rostrata symbiont strain ORS571, Nif-, Fix- and Nod- mutants were isolated. The Nif- mutants had lost both free-living and symbiotic N2 fixation capacity. The Fix- mutants normally fixed N2 in the free-living state but induced ineffective nodules on S. rostrata. They were defective in functions exclusively required for symbiotic N2 fixation. A further analysis of the Nod- mutants allowed the identification of two nod loci. A Tn5 insertion in nod locus 1 completely abolished both root and stem nodulation capacity. Root hair curling, which is an initial event in S. rostrata root nodulation, was no longer observed. A 400 bp region showing weak homology to the nodC gene of Rhizobium meliloti was located 1.5 kb away from this nod Tn5 insertion. A Tn5 insertion in nod locus 2 caused the loss of stem and root nodulation capacity but root hair curling still occurred. The physical maps of a 20.5 kb DNA region of nod locus 1 and of a 40 kb DNA region of nod locus 2 showed no overlaps. The two nod loci are not closely linked to nif locus 1, containing the structural genes for the nitrogenase complex (Elmerich et al. 1982).  相似文献   

15.
Summary The early events in the development of nodules induced byBradyrhizobium japonicum were studied in serial sections of a wild type (cv. Bragg), a supernodulating mutant (nts 382) and four non-nodulating mutants (nod49, nod139, nod772, andrj 1) of soybean (Glycine max [L.] Merrill). Cultivar Bragg responded to inoculation in a similar manner to that described previously for cv. Williams; centres of sub-epidermal cell divisions were observed both with and without associated infection threads and most infection events were blocked before the formation of a nodule meristem. The non-nodulating mutants (nod49, nod772, andrj 1) had, at most, a few centres of sub-epidermal cell divisions. In general, these were devoid of infection threads and did not develop beyond the very early stages of nodule ontogeny. Sub-epidermal cell divisions or infection threads were never observed on mutant nodl39. This mutant is not allelic to the other non-nodulating mutants and represents a defect in a separate complementation group or gene that is required for nodulation. The supernodulating mutant nts382, which is defective in autoregulation of nodulation, had a similar number of sub-epidermal cell divisions as the wild-type Bragg, but a much greater proportion of these developed to an advanced stage of nodule ontogeny. Mutant nts382, like Bragg, possessed other infection events that were arrested at an early stage of development. The results are discussed in the context of the progression of events in nodule formation and autoregulation of nodulation in soybean.Abbreviations nts nitrate tolerant symbiosis - RT root tip (i.e., position of the tap root tip at the time of inoculation) - SERH shortest emerging root hair (i.e., position of the shortest emerging root hair on the tap root at the time of inoculation) - SCD subepidermal cell divisions  相似文献   

16.
The availability of soybean mutants with altered symbiotic properties allowed an investigation of the shoot or root control of the relevant phenotype. By means of grafts between these mutants and wild-type plants (cultivar Bragg and Williams), we demonstrated that supernodulation as well as hypernodulation (nitrate tolerance in nodulation and lack of autoregulation) is shoot controlled in two mutants (nts382 and nts1116) belonging most likely to two separate complementation groups. The supernodulation phenotype was expressed on roots of the parent cultivar Bragg as well as the roots of cultivar Williams. Likewise it was shown that non-nodulation (resistance to Bradyrhizobium) is root controlled in mutant nod49. The shoot control of nodule initiation is epistatically suppressed by the non-nodulation, root-expressed mutation. These findings suggest that different plant organs can influence the expression of the nodulation phenotype.  相似文献   

17.
18.
The nodulation characteristics of soybean (Glycine max) mutant nts382 are described. The mutant nodulated significantly more than the parent cultivar Bragg in the presence and absence of several combined nitrogen sources (KNO3, urea, NH4Cl, and NH4NO3). The number of nodules on the tap root and on lateral roots was increased in the mutant line. In the presence of KNO3 and urea, nitrogenase activity was considerably higher in nts382 than in Bragg. Mutant plants were generally smaller than wild-type plants. Although nts382 is a supernodulator, inoculation with Rhizobium japonicum was necessary to induce nodule formation and both trial strains CB1809 (= USDA136) and USDA110 elicited the mutant phenotype. Segregation of M3 progeny derived from a M2 wild-type plant indicated that the mutant character is inherited as a Mendelian recessive. The mutant is discussed in the context of regulation of nodulation and of hypotheses that have been proposed to explain nitrate inhibition of nodulation.  相似文献   

19.
The influence of seedling age at the time of inoculation on the regulation of nodule number in soybean (Glycine max [L.] Merr.) was examined in cv. Williams 82 and its hypernodulating mutant NOD1-3. Nodulation was evaluated on plants grown in plastic growth pouches or in vermiculite in 50- or 500-ml glass containers in growth chamber studies. Seeds or seedlings were inoculated once with Bradyrhizobium japonicum strain USDA 110 (10k cells seedling?1) between 0 and 15 days after sowing at 3- or 5-day intervals and were grown for 21 days after inoculation. Nodule number plant?1 was similar across inoculation times in plants grown in growth pouches, but was significantly greater when inoculation was delayed and plants were grown in vermiculite in 500-ml containers. Plant culture in vermiculite in 50- or 500-ml containers confirmed the suppressive effect of restricted space for root growth on nodulation. Inoculation with 105 or 109 USDA 110 cells revealed that nodulation was inhibited by a high inoculum dose. There was a large increase in nodule number plant?1 when plants were transferred from a restricted rooting environment (growth pouch culture) to a nonrestricted rooting environment (2-1 hydroponic pots). Autoregulation was also examined in split-root assemblies of plants in 500-ml containers of vermiculite. Controls involved concurrent inoculation of both root halves at 0. 4 or 8 days after transplant. Treatments involved time-separated inoculations of root halves with the primary and secondary inoculations being separated by 4 days. Plants were harvested at 21 days after inoculation. Williams 82 exhibited autoregulation of nodule number on the root half receiving delayed inoculation, regardless of plant age at the time of primary inoculation. Total nodule number plant?1 invariably increased with later inoculation times. In contrast. NOD1 - 3 exhibited little, if any, autoregulation of nodule number. It was concluded that although Williams 82 exhibits autoregulation of nodule number and NODI - 3 does not, there was no finite limit to nodule number in either line since any delay in inoculation resulted in formation of a greater nodule number on both lines if root growth was not restricted. Nodule number in Williams 82 and NODI - 3 appears to be a function of infection sites (root size) at the time of inoculation and of subsequent plant growth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号