首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Melanoma cell adhesion molecule (MCAM), an adhesion molecule belonging to the Ig superfamily, is an endothelial marker and is expressed in different epithelia. MCAM is expressed as two isoforms differing by their cytoplasmic domain: MCAM-l and MCAM-s (long and short). In order to identify the respective role of each MCAM isoform, we analyzed MCAM isoform targeting in polarized epithelial Madin-Darby canine kidney (MDCK) cells using MCAM-GFP chimeras. Confocal microscopy revealed that MCAM-s and MCAM-l were addressed to the apical and basolateral membranes, respectively. Transfection of MCAM-l mutants established that a single dileucine motif (41-42) of the cytoplasmic domain was required for MCAM-l basolateral targeting in MDCK cells. Although double labelling experiments showed that MCAM-l is not a component of adherens junctions and focal adhesions, its expression on basolateral membranes suggests that MCAM-l is involved in epithelium insuring.  相似文献   

2.
The sat-1 transporter mediates sulfate/bicarbonate/oxalate anion exchange in vivo at the basolateral membrane of the kidney proximal tubule. In the present study, we show two renal cell lines [Madin-Darby canine kidney (MDCK) and porcine proximal tubular kidney (LLC-PK1) cells] that similarly target sat-1 exclusively to the basolateral membrane. To identify possible sorting determinants, we generated truncations of the sat-1 cytoplasmic COOH terminus, fused to enhanced green fluorescence protein (EGFP) or the human IL-2 receptor -chain (Tac) protein, and both fusion constructs were transiently transfected into MDCK cells. Confocal microscopy revealed that removal of the last three residues on the sat-1 COOH terminus, a putative PDZ domain, had no effect on basolateral sorting in MDCK cells or on sulfate transport in Xenopus oocytes. Removal of the last 30 residues led to an intracellular expression for the GFP fusion protein and an apical expression for the Tac fusion protein, suggesting that a possible sorting motif lies between the last 3 and 30 residues of the sat-1 COOH terminus. Elimination of a dileucine motif at position 677/678 resulted in the loss of basolateral sorting, suggesting that this motif is required for sat-1 targeting to the basolateral membrane. This posttranslational mechanism may be important for the regulation of sulfate reabsorption and oxalate secretion by sat-1 in the kidney proximal tubule. enhanced green fluorescence protein; Tac; polarized cells; sorting; transport  相似文献   

3.
The Ca(2+)-dependent cell adhesion molecule uvomorulin is a transmembrane glycoprotein that functions at the cell surface to regulate epithelial cell recognition and adhesion. We have investigated the temporal and spatial regulation of uvomorulin biosynthesis and cell surface expression in Madin-Darby canine kidney epithelial cells. We show that uvomorulin is synthesized as a precursor polypeptide (Mr 135,000) that is core glycosylated in the endoplasmic reticulum. The precursor is processed to the mature polypeptide (Mr 120,000) shortly after addition of complex carbohydrate groups in the late Golgi complex, but prior to delivery of the polypeptide to the cell surface. However, glycosylation is not required for either efficient processing of the precursor or transport of uvomorulin to the cell surface. At the cell surface, uvomorulin is turned over rapidly (t1/2 approximately 5 h). Induction of Ca(2+)-dependent cell-cell contact results in rapid localization of cell surface uvomorulin to regions of contact and an increase in the proportion of uvomorulin that is insoluble in buffers containing Triton X-100. These results indicate several regulatory steps in the biosynthesis and cell surface expression of uvomorulin in epithelial cells.  相似文献   

4.
E-cadherin forms calcium-dependent homophilic intercellular adhesions between epithelial cells. These contacts regulate multiple aspects of cell behavior, including the organization of intercellular tight junctions (TJs). To distinguish between the roles of E-cadherin in formation versus maintenance of junctions, Madin-Darby canine kidney (MDCK) cells were depleted of E-cadherin by RNA interference. Surprisingly, reducing E-cadherin expression had little effect on the protein levels or localization of adherens junction (AJ) or TJ markers. The cells underwent morphological changes, as the normally flat apical surface swelled into a dome. However, apical-basal polarity was not compromised, transmembrane resistance was normal, and zonula occludin protein 1 dynamics at the TJs were unchanged. Additionally, an E-cadherin/Cadherin-6 double knockdown also failed to disrupt established TJs, although beta-catenin was lost from the cell cortex. Nevertheless, cells depleted of E-cadherin failed to properly reestablish cell polarity after junction disassembly. Recovery of cell-cell adhesion, transepithelial resistance, and the localization of TJ and AJ markers were all delayed. In contrast, depletion of alpha-catenin caused long-term disruption of junctions. These results indicate that E-cadherin and Cadherin-6 function as a scaffold for the construction of polarized structures, and they become largely dispensable in mature junctions, whereas alpha-catenin is essential for the maintenance of functional junctions.  相似文献   

5.
6.
The sorting of newly synthesized membrane proteins to the cell surface is an important mechanism of cell polarity. To identify more of the molecular machinery involved, we investigated the function of the small GTPase Rab10 in polarized epithelial Madin-Darby canine kidney cells. We find that GFP-tagged Rab10 localizes primarily to the Golgi during early cell polarization. Expression of an activated Rab10 mutant inhibits biosynthetic transport from the Golgi and missorts basolateral cargo to the apical membrane. Depletion of Rab10 by RNA interference has only mild effects on biosynthetic transport and epithelial polarization, but simultaneous inhibition of Rab10 and Rab8a more strongly impairs basolateral sorting. These results indicate that Rab10 functions in trafficking from the Golgi at early stages of epithelial polarization, is involved in biosynthetic transport to the basolateral membrane and may co-operate with Rab8.  相似文献   

7.
The development of surface polarity has been studied in the epithelial Madin-Darby canine kidney (MDCK) cell line by examining two basolateral markers: a monoclonal antibody against a 58-kd protein and [35S]methionine uptake. The surface distribution of these markers was followed after plating the cells on coverslips or nitrocellulose filters. In subconfluent monolayers the apical surface of many cells was stained with the anti-58-kd antibody. Clearing of the apical surface occurred first after confluency had been reached in cells grown on coverslips. Similarly, in cells grown on filters the basolateral 58-kd protein disappeared from the apical surface concomitantly with the development of a measurable electrical resistance over the cell monolayer. The uptake of [35S]methionine was measured from both sides of filter-grown cells and began to polarize early after seeding, reaching a value of greater than 98% basolateral in the fully polarized monolayer. These results emphasize that the development of surface polarity in MDCK cells is a gradual process, and that extensive cell-cell contacts seem to be required for complete surface polarization.  相似文献   

8.
Vuong TT  Prydz K  Tveit H 《Glycobiology》2006,16(4):326-332
Serglycin with a green fluorescent protein tag (SG-GFP) expressed in epithelial Madin-Darby canine kidney cells is secreted mainly (85%) into the apical medium, but the glycosaminoglycan (GAG) chains on the SG-GFP protein core secreted basolaterally (15%) carry most of the sulfate added during biosynthesis (Tveit et al. (2005) J. Biol. Chem., 280, 29596-29603). Here we report further differences in apical and basolateral GAG synthesis. The less intensely sulfated chondroitin sulfate (CS) chains on apically secreted SG-GFP are longer than CS chains attached to basolateral SG-GFP, whereas the heparan sulfate (HS) chains are of similar lengths. When the supply of 3'-phosphoadenosine-5'-phosphosulfate (PAPS) is limited by chlorate treatment, the synthesis machinery maintains sulfation of HS chains on basolateral SG-GFP until it is inhibited at 50 mM chlorate, whereas basolateral CS chains lose sulfate already at 12.5 mM chlorate and become longer. Apically, incorporation of 35S-sulfate into CS is reduced to a lesser extent at higher chlorate concentrations than basolateral CS, although apical CS is less intensely sulfated than basolateral CS in control cells. Similar to what was found for basolateral HS, sulfation of apical HS was not reduced at chlorate concentrations below 50 mM. Also, protein-free, xyloside-based GAG chains secreted basolaterally are more intensely sulfated than their apical counterpart, supporting the view that separate apical and basolateral pathways exist for GAG synthesis and sulfation. Introduction of benzyl beta-d-xyloside (BX) to the GAG synthesis machinery reduces the apical secretion of SG-GFP dramatically and also the modification of SG-GFP by HS.  相似文献   

9.
Different mechanisms for polarized sorting of apical and basolateral plasma membrane proteins appear to be operative in different cell types. In hepatocytes, all proteins are first transported to the basolateral surface, where sorting (probably signal-mediated) of apical proteins then takes place. In contrast, in Madin-Darby canine kidney (MDCK) cells, proteins are directly transported from the trans-Golgi network to their appropriate plasma membrane domain. In order to study the differences in the sorting requirements of the two cell types, we have expressed a hepatocyte-specific basolateral membrane protein, the asialoglycoprotein receptor H1, in MDCK cells. H1 was found to be specifically transported to the basolateral domain also in this heterologous system, suggesting that either the same basolateral targeting signal is operative in both cell types or, more likely, that basolateral transport occurs "by default," i.e. without the requirement for a sorting signal.  相似文献   

10.
We have grown polarized epithelial Madin-Darby canine kidney II (MDCK II) cells on filters in the presence of [(35)S]sulfate, [(3)H]glucosamine, or [(35)S]cysteine/[(35)S]methionine to study proteoglycan (PG) synthesis, sorting, and secretion to the apical and basolateral media. Whereas most of the [(35)S]sulfate label was recovered in basolateral PGs, the [(3)H]glucosamine label was predominantly incorporated into the glycosaminoglycan chains of apical PGs, indicating that basolateral PGs are more intensely sulfated than their apical counterparts. Expression of the PG serglycin with a green fluorescent protein tag (SG-GFP) in MDCK II cells produced a protein core secreted 85% apically, which was largely modified by chondroitin sulfate chains. Surprisingly, the 15% of secreted SG-GFP molecules recovered basolaterally were more heavily sulfated and displayed a different sulfation pattern than the apical counterpart. More detailed studies of the differential modification of apically and basolaterally secreted SG-GFP indicate that the protein cores have been designated to apical and basolateral transport platforms before pathway-specific, post-translational modifications have been completed.  相似文献   

11.
Sorting of sphingolipids in epithelial (Madin-Darby canine kidney) cells   总被引:49,自引:31,他引:18       下载免费PDF全文
To study the intracellular transport of newly synthesized sphingolipids in epithelial cells we have used a fluorescent ceramide analog, N-6[7-nitro-2,1,3-benzoxadiazol-4-yl] aminocaproyl sphingosine (C6-NBD-ceramide; Lipsky, N. G., and R. E. Pagano, 1983, Proc. Natl. Acad. Sci. USA, 80:2608-2612) as a probe. This ceramide was readily taken up by filter-grown Madin-Darby canine kidney (MDCK) cells from liposomes at 0 degrees C. After penetration into the cell, the fluorescent probe accumulated in the Golgi area at temperatures between 0 and 20 degrees C. Chemical analysis showed that C6-NBD-ceramide was being converted into C6-NBD-sphingomyelin and C6-NBD-glucosyl-ceramide. An analysis of the fluorescence pattern after 1 h at 20 degrees C by means of a confocal scanning laser fluorescence microscope revealed that the fluorescent marker most likely concentrated in the Golgi complex itself. Little fluorescence was observed at the plasma membrane. Raising the temperature to 37 degrees C for 1 h resulted in intense plasma membrane staining and a loss of fluorescence from the Golgi complex. Addition of BSA to the apical medium cleared the fluorescence from the apical but not from the basolateral plasma membrane domain. The basolateral fluorescence could be depleted only by adding BSA to the basal side of a monolayer of MDCK cells grown on polycarbonate filters. We conclude that the fluorescent sphingomyelin and glucosylceramide were delivered from the Golgi complex to the plasma membrane where they accumulated in the external leaflet of the membrane bilayer. The results also demonstrated that the fatty acyl labeled lipids were unable to pass the tight junctions in either direction. Quantitation of the amount of NBD-lipids delivered to the apical and the basolateral plasma membranes during incubation for 1 h at 37 degrees C showed that the C6-NBD-glucosylceramide was two- to fourfold enriched on the apical as compared to the basolateral side, while C6-NBD-sphingomyelin was about equally distributed. Since the surface area of the apical plasma membrane is much smaller than that of the basolateral membrane, both lipids achieved a higher concentration on the apical surface. Altogether, our results suggest that the NBD-lipids are sorted in MDCK cells in a way similar to their natural counterparts.  相似文献   

12.
The AP-1B clathrin adaptor complex plays a key role in the recognition and intracellular transport of many membrane proteins destined for the basolateral surface of epithelial cells. However, little is known about other components that act in conjunction with AP-1B. We found that the Rab8 GTPase is one such component. Expression of a constitutively activated GTP hydrolysis mutant selectively inhibited basolateral (but not apical) transport of newly synthesized membrane proteins. Moreover, the effects were limited to AP-1B-dependent basolateral cargo; basolateral transport of proteins containing dileucine targeting motifs that do not interact with AP-1B were targeted normally despite overexpression of mutant Rab8. Similar results were obtained for a dominant-negative allele of the Rho GTPase Cdc42, previously implicated in basolateral transport but now shown to be selective for the AP-1B pathway. Rab8-GFP was localized to membranes in the TGN-recycling endosome, together with AP-1B complexes and the closely related but ubiquitously expressed AP-1A complex. However, expression of active Rab8 caused a selective dissociation of AP-1B complexes, reflecting the specificity of Rab8 for AP-1B-dependent transport.  相似文献   

13.
E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120ctn interacts with E-cadherin, because p120ctn localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Rho family GTPases; catenin; polarity; sorting; actin  相似文献   

14.
Zonula occludens (ZO)-1 was the first tight junction protein to be cloned and has been implicated as an important scaffold protein. It contains multiple domains that bind a diverse set of junction proteins. However, the molecular functions of ZO-1 and related proteins such as ZO-2 and ZO-3 have remained unclear. We now show that gene silencing of ZO-1 causes a delay of approximately 3 h in tight junction formation in Madin-Darby canine kidney (MDCK) epithelial cells, but mature junctions seem functionally normal even in the continuing absence of ZO-1. Depletion of ZO-2, cingulin, or occludin, proteins that can interact with ZO-1, had no discernible effects on tight junctions. Rescue of junction assembly using murine ZO-1 mutants demonstrated that the ZO-1 C terminus is neither necessary nor sufficient for normal assembly. Moreover, mutation of the PDZ1 domain did not block rescue. However, point mutations in the Src homology 3 (SH3) domain almost completely prevented rescue. Surprisingly, the isolated SH3 domain of ZO-1 could also rescue junction assembly. These data reveal an unexpected function for the SH3 domain of ZO-1 in regulating tight junction assembly in epithelial cells and show that cingulin, occludin, or ZO-2 are not limiting for junction assembly in MDCK monolayers.  相似文献   

15.
Heterogeneity in Madin-Darby canine kidney (MDCK) epithelial cells has been reported, however, its details have not been well described. In the present study, we show that subclones obtained from a MDCK cell line could be divided into two morphologically and biochemically distinct cell types with different hormonal responsiveness. Clones of the first type, motile clones, which had extended and flattened cytoplasm, were devoid of carbonic anhydrase activity. Clones of the second type, nonmotile clones, formed colonies of cuboidal cells and showed carbonic anhydrase activity. Motile clones synthesized cAMP in response to arginine vasopressin, prostaglandin E1, and isoproterenol but not glucagon. In contrast, nonmotile clones responded to all of these hormones. These findings suggest MDCK cells have multiple cellular origins. The motile clones have characteristics similar to the principal cells of the collecting system, whereas the nonmotile clones may be derived from the thick ascending limb or the intercalated cell. Our studies also demonstrate a significant influence of culture condition on MDCK cellular behavior (carbonic anhydrase activity, Na+/K+-ATPase activity and vasopressin responsiveness). Therefore, physiologic and biochemical experiments with MDCK cells must be interpreted with reservations about cellular heterogeneity as well as differences induced by culture conditions.  相似文献   

16.
The Madin-Darby canine kidney (MDCK) cell line, derived from distal tubule/collecting duct, expresses differentiated properties of renal tubule epithelium in culture. We studied the expression of adrenergic receptors in MDCK to examine the role of catecholamines in the regulation of renal function. Radioligand-binding studies demonstrated, on the basis of receptor affinities of subtype-selective adrenergic agonists and antagonists, that MDCK cells have both alpha 1- and beta 2- adrenergic receptors. To determine whether these receptor types were expressed by the same cell, we developed a number of clonal MDCK cell lines. The clonal lines had stable but unique morphologies reflecting heterogeneity in the parent cell line. Some clones expressed only beta 2-adrenergic receptors and were nonmotile, whereas others expressed both alpha 1- and beta 2-receptors and demonstrated motility on the culture substrate at low cell densities. In one clone, alpha- and beta- receptor expression was stable for more than 50 passages. Catecholamine agonists increased phosphatidylinositol turnover by activating alpha- adrenergic receptors and cellular cyclic adenosine monophosphate accumulation by activating beta-adrenergic receptors. Guanine nucleotide decreased the affinity of isoproterenol for the beta 2- receptor but did not alter the affinity of epinephrine for the alpha 1- receptor. These results show that alpha 1- and beta 2-receptors can be expressed by a single renal tubular cell and that the two receptors behave as distinct entities in terms of cellular response and receptor regulation. Heterogeneity of adrenergic receptor expression in MDCK clones may reflect properties of different types of renal tubule cells.  相似文献   

17.
The effect of brefeldin A (BFA) on total and polarized protein secretion was examined in MDCK cells. Increasing concentrations of BFA have increasingly inhibitory effects on total protein secretion. The total protein secretion was essentially unaffected by BFA at 0.5 microgram/ml. When the BFA concentration was increased to 10 and 30 micrograms/ml, the total protein secretion was reduced to about 70 and 25%, respectively, of the control level. Consistent with this effect on total protein secretion, the Golgi structure as revealed by C6-NBD-ceramide (a fluorescent ceramide analog) staining was essentially unaltered by 0.5 microgram/ml BFA, while 10 and 30 micrograms/ml BFA significantly dispersed the Golgi apparatus. When the polarity of protein secretion was examined, it was found that the ratio of proteins secreted from the apical to those from the basolateral surface was reduced from 1.5-2.0 to 0.4-0.7 by all three BFA concentrations. Furthermore, several proteins which are preferentially released from the apical surface were found to be released without apparent surface polarity, while several other proteins which were preferentially released from the basolateral surface were unaffected. This study suggests that BFA, at 0.5 microgram/ml, can selectively inhibit protein secretion from the apical surface without affecting total protein secretion. The inhibition of apical secretion results in enhanced protein secretion from the basolateral surface.  相似文献   

18.
Endocytosis in filter-grown Madin-Darby canine kidney cells   总被引:20,自引:14,他引:6       下载免费PDF全文
《The Journal of cell biology》1989,109(6):3243-3258
In this paper, we have characterized the apical and basolateral endocytic pathways of epithelial MDCK cells grown on filters. The three- dimensional organization of the endocytic compartments was analyzed by confocal microscopy after internalization of a fluorescent fluid-phase marker from either side of the cell layer. After 5 min of internalization, distinct sets of apical and basolateral early endosomes were observed lining the plasma membrane domain from which internalization had occurred. At later time points, the apical and the basolateral endocytic pathways were shown to converge in the perinuclear region. Mixing of two different fluorescent markers could be detected after their simultaneous internalization from opposite sides of the cell layer. The extent of the meeting was quantitated by measuring the amount of complex formed intracellularly between avidin internalized from the apical side and biotinylated horseradish peroxidase (HRP) from the basolateral side. After 15 min, 14% of the avidin marker was complexed with the biotinylated HRP and this value increased to 50% during a subsequent chase of 60 min in avidin-free medium. We also determined the kinetics of fluid internalization, recycling, transcytosis, and intracellular retention using HRP as a marker. Fluid was internalized with the same rates from either surface domain (1.2 x 10(-4) microns 3/min per microns 2 of surface area). However, significant differences were observed for each pathway in the amounts and kinetics of marker recycled and transcytosed. The content of apical early endosomes was primarily recycled and transcytosed (45% along Bach route after 1 h internalization), whereas delivery to late endocytic compartments was favored from the basolateral early endosome (77% after 1 h). Our results demonstrate that early apical and basolateral endosomes are functionally and topologically distinct, but that the endocytic pathways converge at later stages in the perinuclear region of the cell.  相似文献   

19.
Madin-Darby canine kidney cells were used to study events in the postsynthetic processing and cell surface delivery of Na,K-ATPase. The photoactivable 2-nitro-5-azidobenzoyl (NAB) derivative of ouabain and an anti-ouabain antibody were employed in experiments designed to determine the time intervals required for newly synthesized Na,K-ATPase to achieve the capacity to bind ouabain and to arrive at the cell surface. Ouabain-binding capacity was assessed in Madin Darby canine kidney cells which were pulse-labeled with [35S]methionine. At various chase intervals cells were disrupted by probe sonication and the resultant vesicles were permeabilized. Vesicles were incubated with NAB-ouabain and, following UV photolysis, solubilized and subjected to immunoprecipitation with an anti-ouabain antibody. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and fluorography of immunoprecipitates revealed that newly synthesized Na,K-ATPase can carry out type II (Mg2+ and Pi supported) ouabain binding throughout the course of its postsynthetic processing. In contrast, the ability to carry out type I (Na+, Mg2+, and ATP-supported) ouabain binding is not attained until 10 min after the completion of the sodium pump's synthesis. Experiments in which intact pulse-labeled cells were incubated with NAB-ouabain revealed that the Na,K-ATPase arrives at the cell surface as soon as 50 min after its synthesis. These results suggest that postsynthetic processing is required before the newly synthesized Na,K-ATPase can display its full repertoire of catalytic functions. This processing seems to be complete prior to the newly synthesized sodium pump's arrival at the cell surface.  相似文献   

20.
Many intracellular parasites are capable of penetrating host epithelial barriers. To study this process in more detail we examined the interactions between the pathogenic bacteria Salmonella choleraesuis and polarized epithelial monolayers of Madin-Darby canine kidney (MDCK) cells grown on membrane filters. Association of bacteria with the MDCK cell apical surface was an active event, requiring bacterial RNA and protein synthesis, and was blocked by low temperatures. Salmonella were internalized within a membrane-bound vacuole and exhibited penetration through, but not between MDCK cells. A maximum of 14 Salmonella per MDCK cell crossed the monolayer per hour to the basolateral surface yet the monolayer remained viable and impermeable to Escherichia coli. Apical S. choleraesuis infection resulted in an increase in paracellular permeability but the MDCK intercellular contacts were not significantly disrupted. Basolateral S. choleraesuis infection was inefficient, and only small numbers of S. choleraesuis penetrated to the apical medium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号