共查询到20条相似文献,搜索用时 93 毫秒
1.
An Immunoblot Study of Neurofilament Degradation In Situ and During Calcium-Activated Proteolysis 总被引:4,自引:8,他引:4
W. W. Schlaepfer C. Lee V. M.-Y. Lee U.-J. P. Zimmerman 《Journal of neurochemistry》1985,44(2):502-509
The degradation of neurofilament (NF) proteins was examined by immunoblot methods to identify, characterize, and monitor the appearance of immunoreactive breakdown products during the loss of NF triplet proteins. Individual NF proteins and their breakdown products were identified using polyclonal and monoclonal antibodies to NF proteins. NF degradation was compared during calcium-activated proteolysis of isolated rat NF, during an experimental influx of calcium into excised rat spinal nerve roots, and during NF breakdown in transected rat peripheral nerve. These different experimental conditions produced similar patterns of NF fragmentation, including the transient appearance of NF immunobands between Mr 150,000-200,000 and 110,000-120,000 as well as the appearance and accumulation of NF immunobands between Mr 45,000 and 65,000. Most immunoreactive NF fragments remained Triton-insoluble. Low levels of the same immunoreactive fragments were present in control neural tissues, suggesting that calcium-activated proteolysis may be operative in the turnover and/or processing of NF proteins in vivo. Very similar patterns of NF degradation during experimental calcium influxes into different CNS and PNS tissues are indicative of the widespread distribution of calcium-activated NF protease in neural tissues. 相似文献
2.
Membrane-Associated Cytoskeletal Proteins in Squid Giant Axons 总被引:2,自引:1,他引:1
Jesse Baumgold Susumu Terakawa Kunihiko Iwasa Harold Gainer 《Journal of neurochemistry》1981,36(2):759-764
Abstract: Cytoskeletal proteins (e.g., tubulin, actin, and neurofilament proteins) in the squid giant axon are separable into KF-soluble and -insoluble forms. The KF-insoluble cytoskeletal components appear to constitute the major proteins in the subaxolemmal fibrous network on the inner surface of the axon. These cytoskeletal proteins and the subaxolemmal network are both highly soluble in KI solutions. Whereas giant axons tolerate prolonged perfusions in KF solutions with no loss of excitable properties, a relatively short perfusion with KI solution completely eliminates the excitability of the axon. The loss of this excitability correlates with the simultaneous dissolution of the subaxolemmal network of cytoskeletal proteins and the release of its proteins into the perfusate. These data support the hypothesis that cytoskeletal proteins associated with the inner surface of the axolemma are involved in the regulation of axonal excitability. 相似文献
3.
Differential Compartmentalization of mRNAs in Squid Giant Axon 总被引:1,自引:0,他引:1
Jong-Tai Chun Anthony E. Gioio Marianna Crispino Antonio Giuditta Barry B. Kaplan 《Journal of neurochemistry》1996,67(5):1806-1812
4.
Anthony E. Gioio Jong-Tai Chun Marianna Crispino †Carla Perrone Capano Antonio Giuditta Barry B. Kaplan 《Journal of neurochemistry》1994,63(1):13-18
Abstract: Recently, we reported the construction of a cDNA library encoding a heterogeneous population of polyadenylated mRNAs present in the squid giant axon. The nucleic acid sequencing of several randomly selected clones led to the identification of cDNAs encoding β-actin and β-tubulin, two relatively abundant axonal mRNA species. To continue characterization of this unique mRNA population, the axonal cDNA library was screened with a cDNA probe encoding the carboxy terminus of the squid kinesin heavy chain. The sequencing of several positive clones unambiguously identified axonal kinesin cDNA clones. The axonal localization of kinesin mRNA was subsequently verified by in situ hybridization histochemistry. In addition, the presence of kinesin RNA sequences in the axoplasmic polyribosome fraction was demonstrated using PCR methodology. In contrast to these findings, mRNA encoding the squid sodium channel was not detected in axoplasmic RNA, although these sequences were relatively abundant in the giant fiber lobe. Taken together, these findings demonstrate that kinesin mRNA is a component of a select group of mRNAs present in the squid giant axon, and suggest that kinesin may be synthesized locally in this model invertebrate motor neuron. 相似文献
5.
Abstract: The six neurofilament proteins (NFPs) in the goldfish Mauthner axon (M-axon) have molecular sizes of 235, 145, 123, 105, 80, and 60 kDa. To determine if NFPs in the M-axon are phosphorylated, isolated Mauthner axoplasm (M-axoplasm) and a neurofilament-enriched extract (NFE) prepared from M-axoplasm were incubated with 32 P, which resulted in the radiolabeling of NFPs as determined by their detection on autoradiograms. Kinase inhibitors directed against cyclic AMP-dependent kinases (PKAs) or cofactor-independent kinases significantly reduced the in vitro phosphorylation of NFPs in NFE, whereas inhibitors directed against protein kinase C did not significantly reduce the in vitro phosphorylation of NFPs in NFE. Experiments using two kinase inhibitors directed against different kinases significantly reduced the in vitro phosphorylation of NFPs in NFE to a greater extent than the reduction produced using any single kinase inhibitor. These data suggest that NFPs in the M-axon are phosphorylated and that the in vitro (and perhaps the in vivo) phosphorylation of NFPs is mediated by PKA and/or cofactor-independent kinases that copurify with NFPs. 相似文献
6.
Dongming Sun Pompeo Macioce Steven S. M. Chin Ronald K. H. Liem 《Journal of neurochemistry》1997,68(3):917-926
Abstract: To understand the assembly characteristics of the high-molecular-weight neurofilament protein (NF-H), carboxyl- and amino-terminally deleted NF-H proteins were examined by transiently cotransfecting mutant NF-H constructs with the other neurofilament triplet proteins, low- and middle-molecular-weight neurofilament protein (NF-L and NF-M, respectively), in the presence or absence of cytoplasmic vimentin. The results confirm that NF-H can coassemble with vimentin and NF-L but not with NF-M into filamentous networks. Deletions from the amino-terminus show that the N-terminal head is necessary for the coassembly of NF-H with vimentin, NF-L, or NF-M/vimentin. However, headless NF-H or NF-H from which the head and a part of the rod is removed can still incorporate into an NF-L/vimentin network. Deletion of the carboxyl-terminal tail of NF-H shows that this region is not essential for coassembly with vimentin but is important for coassembly with NF-L into an extensive filamentous network. Carboxyl-terminal deletion into the α-helical rod results in a dominant-negative mutant, which disrupts all the intermediate filament networks. These results indicate that NF-L is the preferred partner of NF-H over vimentin and NF-M, the head region of NF-H is important for the formation of NF-L/NF-H filaments, and the tail region of NF-H is important to form an extensive network of NF-L/NF-H filaments. 相似文献
7.
Marianna Crispino Carla Perrone Capano† Barry B. Kaplan‡ Antonio Giuditta 《Journal of neurochemistry》1993,61(3):1144-1146
Abstract: It is generally believed that the proteins of the nerve endings are synthesized on perikaryal polysomes and are eventually delivered to the presynaptic domain by axoplasmic flow. At variance with this view, we have reported previously that a synaptosomal fraction from squid brain actively synthesizes proteins whose electrophoretic profile differs substantially from that of the proteins made in nerve cell bodies, axons, or glial cells, i.e., by the possible contaminants of the synaptosomal fraction. Using western analyses and immunoabsorption methods, we report now that (a) the translation products of the squid synaptosomal fraction include neurofilament (NF) proteins and (b) the electrophoretic pattern of the synaptosomal newly synthesized NF proteins is drastically different from that of the IMF proteins synthesized by nerve cell bodies. The latter results exclude the possibility that NF proteins synthesized by the synaptosomal fraction originate in fragments of nerve cell bodies possibly contaminating the synaptosomal fraction. They rather indicate that in squid brain, nerve terminals synthesize NF proteins. 相似文献
8.
Lateral projections of neurofilaments (NF) called sidearms (SA) affect axon stability and caliber. SA phosphorylation is thought to modulate inter-NF distance and interactions between NF and other subcellular organelles. SA were probed by atomic force microscopy (AFM) and dynamic light scattering (DLS) as a function of phosphorylation and ATP content. DLS shows SA are larger when phosphorylated, and AFM shows four unfoldable domains in SA regardless of phosphorylation state or the presence of ATP. However, the native phosphorylated SA requires three-fold higher force to unfold by AFM than dephosphorylated SA, suggesting a less pliant as well as larger structure when phosphorylated. 相似文献
9.
In this article a fast HPLC technique to separate the individual neurofilament proteins is described. Highly pure fractions of the three neurofilament proteins can be obtained. As much as 50 mg of each neurofilament polypeptide can be separated from a crude neurofilament protein preparation in one step in less than 2 h. The short separation time is of importance in minimizing degradation, especially of the 150-kilodalton neurofilament polypeptide. 相似文献
10.
Phosphorylation Modulates Calpain-Mediated Proteolysis and Calmodulin Binding of the 200-kDa and 160-kDa Neurofilament Proteins 总被引:4,自引:0,他引:4
Jeffrey A. Greenwood Juan C. Troncoso † Anthony C. Costello Gail V. W. Johnson 《Journal of neurochemistry》1993,61(1):191-199
Abstract: The effects of enzymatic dephosphorylation on neurofilament interaction with two calcium-binding proteins, calpain and calmodulin, were examined. Dephosphorylation increased the rate and extent of 200-kDa neurofilament protein proteolysis by calpain. In contrast, dephosphorylation of the 160-kDa neurofilament protein did not alter the rate or extent of calpain proteolysis. However, the calpain-induced breakdown products of native and dephosphorylated 160-kDa neurofilament protein were different. Dephosphorylation did not change the proteolytic rate, extent, or breakdown products of the 68-kDa neurofilament protein. Calmodulin binding to the purified individual 160- and 200-kDa neurofilament proteins was increased following dephosphorylation. These results suggest that phosphorylation may regulate the metabolism and function of neurofilaments by modulating interactions with the calcium-activated proteins calpain and calmodulin. 相似文献
11.
Neurofilament Proteins Are Distributed in a Diminishing Proximodistal Gradient Along Rat Sciatic Nerve 总被引:3,自引:2,他引:1
Neurofilament (NF) proteins are distributed in a diminishing proximodistal gradient along rat sciatic nerve when compared with total noncollagen or other proteins in nerve. About a twofold decline of NF proteins can be detected by quantitating nerve proteins that have been separated by gel electrophoresis. A similar decrease of immunoreactivity to each NF subunit is seen in distal nerve segments when noncollagen nerve proteins are immunoblotted. Parallel decreases occur in all three NF proteins, thereby maintaining neurofilament subunit stoichiometry along the neuraxis. The same NF gradient can be detected when the NF contents in nerve branches to the gluteus and gastrocnemius muscles are compared with each other and with those in nerve segments taken from the same proximodistal levels of the parent sciatic nerve. The gradient of NF proteins increases during postnatal development and is readily detected by postnatal day 16. During the same period of development, the heavy NF subunit appears for the first time and is rapidly incorporated throughout the sciatic nerve. Hence, the NF gradient becomes manifest during the development and maturation of the adult form of the axonal cytoskeleton. The basis for the proximodistal gradient of NF proteins in peripheral nerve is presently unknown. The extent of the gradient cannot be accounted for on the basis of diminishing numbers of nerve fibers or increasing amounts of other nerve proteins, e.g., collagen, in distal nerve. An alternative interpretation is that the gradient reflects a low level of NF protein turnover during axonal transport. 相似文献
12.
Brian A. Hollander Champakali Ayyub Gerry Shaw Gudrun S. Bennett 《Journal of neurochemistry》1993,61(6):2115-2123
Although neurofilaments are among the most highly phosphorylated proteins extant, relatively little is known about the kinases involved in their phosphorylation. The majority of the phosphates present on the two higher-molecular-mass neurofilament subunits are added to multiply repeated sequence motifs in the tail. We have examined the specificity of a neurofilament-associated kinase (NFAK) partially purified from chicken spinal cord that selectively phosphorylates the middle-molecular-mass neurofilament subunit, NF-M. Two-dimensional phosphopeptide mapping of 32P-labeled NF-M shows that, in vitro, NFAK phosphorylates a subset of peptides phosphorylated in vivo in cultured neurons. The absence of a complete complement of labeled phosphopeptides following in vitro phosphorylation, compared with phosphorylation in vivo, is not due to a lack of availability of phosphorylation sites because the same maps are obtained when enzymatically dephosphorylated NF-M is used as an in vitro substrate. Phosphopeptide maps from in vitro-phosphorylated NF-M and those from a recombinant fusion protein containing only a segment of the tail piece of chicken NF-M reveal identical labeled peptides. The fusion protein lacks a segment containing 17 KXX(S/T)P putative phosphorylation sites contained in the tail of chicken NF-M but contains a segment that includes four KSPs and a KSD site also present in the intact tail. These results suggest (a) that NFAK mediates the phosphorylation of some, but not all, potential phosphorylation sites within the tail of NF-M and (b) that multiple kinases are necessary for complete phosphorylation of the NF-M tail. 相似文献
13.
The frog optic nerve contains a major group of proteins at a molecular weight of 62K. These proteins are insoluble in nonionic detergents, reactive with a general antibody to intermediate filament proteins, and not labeled by ex vivo incubations of optic nerve. They were therefore considered neurofilament proteins. Axonal transport and enucleation studies were performed to characterize further the origin of these proteins. The results show that the 62K proteins are transported into the optic nerve at a very slow rate (0.1 mm/day). After enucleation, these proteins are substantially reduced in concentration to 20% of the control value at 13 weeks. The predominant neurofilament proteins of the frog optic nerve are 62K in molecular weight. These results are discussed in terms of the anatomy of the frog optic nerve and also contrasted to findings obtained for the goldfish optic nerve. 相似文献
14.
Neurofilaments follow the structural principles of non-neuronal intermediate filaments but contain additional sequences which are carboxyterminally located and increase in length between triplet proteins (68 kDa, 160 kDa and 200 kDa). The tailpiece domain has been sequenced in the case of the porcine 68 kDa protein. It has a unique amino acid composition. Within 106 residues there are only 12 different amino acid types, and glutamic acid accounts for 46% of the sequence. Examination of the literature on highly acidic brain proteins leads us to the proposal that microglutamic acid-rich protein, Glu-50, macroglutamic protein, as well as some unusual components of the S100 class, are most likely proteolytic degradation products of the neurofilament 68 kDa protein. 相似文献
15.
Abstract : We have shown previously that phosphate groups on the amino-terminal head domain region of the middle molecular mass subunit of neurofilament proteins (NF-M) are added by second messenger-dependent protein kinases. Here, we have identified Ser23 as a specific protein kinase A phosphorylation site on the native NF-M subunit and on two synthetic peptides, S1 (14RRVPTETRSSF24) and S2 (21RSSFSRVSGSPSSGFRSQSWS41), localized within the amino-terminal head domain region. Ser23 was identified as a phosphorylation site on the 32P-labeled α-chymotryptic peptide that carried >80% of the 32P-phosphates incorporated into the NF-M subunit by protein kinase A. The synthetic peptides S1 and S2 were phosphorylated 18 and two times more efficiently by protein kinase A than protein kinase C, respectively. Neither of the peptides was phosphorylated by casein kinase II. The sequence analyses of the chemically modified phosphorylated serine residues showed that Ser23 was the major site of phosphorylation for protein kinase A on both S1 and S2 peptides. Low levels of incorporation of 32P-phosphates into Ser22, Ser28, and Ser32 by protein kinase A were also observed. Protein kinase C incorporated 32P-phosphates into Ser22, Ser23, Ser25, Ser28, Ser32, and a threonine residue, but none of these sites could be assigned as a major site of phosphorylation. Analyses of the phosphorylated synthetic peptides by liquid chromatography-tandem mass spectrometry also showed that protein kinase A phosphorylated only one site on peptide S1 and that ions with up to four phosphates were detected on peptide S2. Analysis of the data from the tandem ion trap mass spectrometry by using the computer program PEPSEARCH did not unequivocally identify the specific sites of phosphorylation on these serine-rich peptides. Our data suggest that Ser23 is a major protein kinase A-specific phosphorylation site on the amino-terminal head region of the NF-M subunit. Phosphorylation of Ser23 on the NF-M subunit by protein kinase A may play a regulatory role in neurofilament assembly and/or the organization of neurofilaments in the axon. 相似文献
16.
Cellular and subcellular distributions of axolinin, the 260-kilodalton (kD) microtubule-associated glycoprotein originally purified from squid axons, in various squid tissues such as optical lobes, bundles of small nerve fibers (fin nerves), giant stellate ganglia, skin, muscle, liver, and gill, were immunologically studied using monoclonal antibodies specifically recognizing the polypeptide chain of axolinin. The following results were obtained: (1) Axolinin is confined to squid neurons and skin; (2) axolinin is localized in the axon whereas another 260-kD microtubule-associated protein, MAP B, is localized in the cell bodies; and (3) axolinin is localized mainly in the peripheral part of the axoplasm of the squid giant axon. The last result has confirmed our previous conclusion obtained using polyclonal antisera against axolinin, which contain antibodies recognizing not only axolinin-specific epitopes but also nonspecific epitopes. The physiological importance of the localization of axolinin in axons and the skin is discussed based on its possible relationship to excitability function. 相似文献
17.
Abstract: The present study sought to investigate the presence and distribution of some enzymatic activities involved in the metabolism of glutamate in the giant nerve fiber of the tropical squid Sepioteuthis sepioidea . Specific activities of aspartate aminotransferase and glutamate dehydrogenase were evaluated in homogenates of the isolated giant fiber, extruded axoplasm, and axoplasm-free giant nerve fiber sheaths. The activities of both enzymes were present in the tissue. The specific activity of aspartate aminotransferase was similar in axoplasm and sheaths. However, the specific activity of glutamate dehydrogenase was an order of magnitude higher in the sheaths. This finding is discussed in the framework of the hypothesis that proposes that a differential distribution of the enzymes of the glutamatergic system between the axonal and neuroglial compartments forms part of a system of communication between these cells whose neuronal signal may be glutamate. 相似文献
18.
Benoit I. Giasson James A. Cromlish Eric S. Athlan Walter E. Mushynski 《Journal of neurochemistry》1996,66(3):1207-1213
Abstract: The activation of cyclic AMP-dependent protein kinase (PKA) in rat dorsal root ganglion (DRG) cultures increased phosphorylation of the low-molecular-mass neurofilament subunit (NFL) at a site previously identified as Ser55 but had no effect on neurofilament integrity. When PKA was activated in DRG cultures treated with 20–250 n M okadaic acid, neurofilament fragmentation was enhanced, and there was a corresponding increase in phosphorylation of NFL at a novel site. This site was also phosphorylated by PKA in vitro and was determined to be Ser2 by mass spectrometric analysis of the purified chymotryptic phosphopeptide. The PKA sites in NFL were dephosphorylated by the purified catalytic subunit of protein phosphatase-2A but not that of protein phosphatase-1, and phosphoserine-2 was a better substrate than phosphoserine-55. The phosphorylation and dephosphorylation of Ser2 and Ser55 in NFL may therefore be involved in the modulation of neurofilament dynamics through the antagonistic effects of PKA and protein phosphatase-2A. 相似文献
19.
The components of magnesium efflux in squid axons have been studied under internal dialysis and voltage clamp conditions. The present report rules out the existence of an ATP-dependent, Na0- and Mg0-independent Mg2+ efflux (ATP-dependent Mg2+ pump) leaving the Mg2+---Na+ exchange system as the only mechanism for Mg2+ extrusion. The main features of the Mg2+ efflux are: (1) The efflux is completely dependent on ATP. (2) The efflux can be activated either by external Na+ (forward Mg2+---Na+ exchange) or external Mg2+ (Mg2+---Mg2+ exchange). (3) The mobility of the Mg2+ exchanger in the Na0+-loaded form is greater than that in the Mg2+-loaded one. (4) In variance with the Na+---Ca2+ exchange mechanism, Mg2+---Mg2+ exchange is not activated by external monovalent cations. (5) ATPγS replaces ATP in activating Mg2+---Na+ exchange suggesting that a phosphorylation/dephosphorylation process regulates this transport mechanism. 相似文献
20.
Mg2+ - or Ca2+ -Activated ATPase in Squid Giant Fiber Axoplasm 总被引:1,自引:0,他引:1
A divalent cation-activated ATPase in axoplasm from the squid giant axon is described. The enzyme requires Mg2+ or Ca2+, has a K+ optimum of 60 mM, and has a pH optimum of 7.5. Several nucleotide triphosphates other than ATP can serve as substrates. The enzyme is inhibited by excess ATP or Mg2+. The enzyme is enriched in a rapidly sedimenting fraction of the axoplasm, and is eluted in the exclusion volume of a Sepharose 4B column, suggesting that it is associated with a highly aggregated structure. Comparison of the properties of enzyme with those of myosin and Na+-K+-ATPase suggests that differs from both of these enzymes. The enzyme has many similarities to vertebrate nerve ATPases previously described. The demonstration of the presence of this ATPase in squid axoplasm proves the neuronal localization of the enzyme. 相似文献