首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new film for the fabrication of an unmediated H2O2 biosensor   总被引:2,自引:0,他引:2  
A novel and stable film made from polyethylene glycol (PEG) on pyrolytic graphite (PG) electrode was presented in this paper for incorporating horseradish peroxidase (HRP) to study the direct electrochemistry of the enzyme. In PEG film, HRP showed a thin-layer electrochemistry behavior. The apparent standard potential (E degrees ') was -0.379 V versus SCE at pH 7.2. Moreover, the PEG-HRP modified electrode exhibited excellent electrocatalytical response to the reduction of H2O2 with a calibration range between 2.0 x 10(-6) and 6.0 x 10(-4) M and a good linear relation from 2.0 x 10(-6) to 1.0 x 10(-4) M, on which an unmediated H2O2 biosensor was based. The detection limit of 6.7 x 10(-7) M was estimated when the signal-to-noise ratio was 3. The relative standard deviation (R.S.D.) was 4.7% for six successive determinations at a concentration of 4.0 x 10(-5) M. The apparent Michaelis-Menten constant (Km app) of the sensor was found to be 1.38 mM. Epinephrine, dopamine, and ascorbic acid did not interfere with the sensitive determination of H2O2.  相似文献   

2.
A novel poly(toluidine blue)-modified electrode has been constructed for the determination of nitric oxide in biological sample. The electrochemical behavior of poly(toluidine blue) film electrode and its electrocatalytic activity toward NO were studied in detail by cyclic voltammetry. Possible interferences were tested and evaluated after further coated with Nafion. The poly(toluidine blue) and Nafion composite film-modified electrode exhibits a good linear relationship over a NO concentration of 1.8 x 10(-7) to 8.6 x 10(-5)mol/L, and the detection limit is 1.8 x 10(-8)mol/L (S/N=3). NO release from the rat liver homogenate stimulated by l-arginine was studied, and the responses were decreased by the nitric oxide synthase inhibitor N(omega)-nitro-l-arginine.  相似文献   

3.
Direct electron transfer process of immobilized horseradish peroxidase (HRP) on a conducting polymer film, and its application as a biosensor for H2O2, were investigated by using electrochemical methods. The HRP was immobilized by covalent bonding between amino group of the HRP and carboxylic acid group of 5,2':5',2"-terthiophene-3'-carboxylic acid polymer (TCAP) which is present on a glassy carbon (GC). A pair of redox peaks attributed to the direct redox process of HRP immobilized on the biosensor electrode were observed at the HRPmid R:TCAPmid R:GC electrode in a 10 mM phosphate buffer solution (pH 7.4). The surface coverage of the HRP immobilized on TCAPmid R:GC was about 1.2 x 10(-12) mol cm(-2) and the electron transfer rate (ks) was determined to be 1.03 s(-1). The HRPmid R:TCAPmid R:GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the reduction of H2O2 without the aid of an electron transfer mediator. The calibration range of H2O2 was determined from 0.3-1.5 mM with a good linear relation.  相似文献   

4.
Yang M  Yang Y  Yang Y  Shen G  Yu R 《Analytical biochemistry》2004,334(1):127-134
An amperometric enzyme biosensor for the determination of choline utilizing two enzymes, choline oxidase (CHOD) and horseradish peroxidase (HRP), is described. The biosensor consisted of CHOD cross-linked onto a HRP-immobilized carbon paste electrode. The biosensor was prepared by in situ electropolymerization of poly(thionine) within a carbon paste containing the enzyme HRP and thionine monomer and then CHOD was immobilized by using chitosan film through cross-linking with glutaraldehyde. The in situ electrogenerated poly(thionine) displays excellent electron transform efficiency between the enzyme HRP and the electrode surface, and the polymer enables improvement in enzyme immobilization within the paste. Several parameters such as the amount of thionine and enzyme, the applied potential, the pH, etc. have been studied. Amperometric detection of choline was realized at an applied potential of -0.2V vs saturated calomel electrode in 1/15M phosphate buffer solution (pH 7.4) with a linear response range between 5.0 x 10(-6) and 6.0 x 10(-4)M choline and a response time of 15s. When applied to the analysis of phosphatidylcholine in serum samples, a 0.997 correlation was obtained between the biosensor results and those obtained by a hospital method.  相似文献   

5.
Direct electron transfer of hemoglobin (Hb) can be achieved in a Hb/montmorillonite (MMT)/polyvinyl alcohol multi-assembly at a pyrolytic graphite (PG) electrode. Accordingly, a novel nitric oxide (NO) biosensor is proposed. The reduction of NO is observed at a potential of approximately -783 mV (vs. SCE) at pH 5.5. At optimum pH, this biosensor shows a wide linear range of 1.0x10(-6)-2.5x10(-4) mol/l with a detection limit of 5.0x10(-7) mol/l. The sensor-to-sensor reproducibility is good consideringmacr; a relative standard deviation of 3.5% in five independent determinations at 5.0x10(-5) mol/l NO. The modified electrode is conveniently constructed and durable in long-term operations.  相似文献   

6.
Ma X  Liu X  Xiao H  Li G 《Biosensors & bioelectronics》2005,20(9):1836-1842
Hemoglobin (Hb) can take direct electron-transfer reactions after being entrapped in poly-3-hydroxybutyrate (PHB) film. A pair of well-defined, quasi-reversible cyclic voltammetric peaks is thus obtained at an Hb-PHB modified pyrolytic graphite electrode. The anodic and cathodic peaks are located at -224 and -284 mV for a pH 5.0 acetate buffer solution. Meanwhile, the peroxidase activity of the protein in the membrane has been greatly enhanced, with the apparent Michaelis-Menten constant calculated to be 1076 microM. According to the direct electron transfer property and enhanced peroxidase activity of Hb in the membrane, a Hb-PHB based hydrogen peroxide biosensor is prepared, with a linear range 6.0 x 10(-7) to 8.0 x 10(-4) M. The pathway of reductive dehalogenation of trichloroacetic acid is also discussed in detail. The highly reduced form of Hb produced in PHB film can be used to dechlorinate di- and monochloroacetic acid. The catalytic ability of Hb toward the reduction of nitric oxide has been investigated as well. Due to its biodegradability, low cost, chemical inertness, and especially its biocompatibility and non-toxicity, PHB would be a desirable film in the sensor field.  相似文献   

7.
A novel hydrogen peroxide biosensor was fabricated for the determination of H(2)O(2). The precursor film was first electropolymerized on the glassy carbon electrode with p-aminobenzene sulfonic acid (p-ABSA) by cyclic voltammetry (CV). Then thionine (Thi) was adsorbed to the film to form a composite membrane, which yielded an interface containing amine groups to assemble gold nanoparticles (nano-Au) layer for immobilization of horseradish peroxidase (HRP). The electrochemical characteristics of the biosensor were studied by CV and chronoamperometry. The factors influencing the performance of the resulting biosensor were studied in detail. The biosensor responded to H(2)O(2) in the linear range from 2.6 x 10(-6) mol/L to 8.8 x 10(-3) mol/L with a detection limit of 6.4 x 10(-7) mol/L. Moreover, the studied biosensor exhibited good accuracy and high sensitivity. The proposed method was economical and efficient, making it potentially attractive for the application to real sample analysis.  相似文献   

8.
A stable electroactive thin film of poly(caffeic acid) has been deposited on the surface of a glassy carbon electrode by potentiostatic technique in an aqueous solution containing caffeic acid. Poly(caffeic acid) was used as a modified electrode for the detection of ascorbic acid (AA), epinephrine (EP), uric acid (UA) and their mixture by cyclic voltammetry. This modified electrode exhibits potent and persistent electron-mediating behavior followed by well-separated oxidation peaks towards AA, EP and UA with activation overpotential. For the ternary mixture containing AA, EP and UA, the three compounds can well separate from each other at the scan rate of 20 mVs(-1) with a potential difference of 156, 132 and 288 mV between AA and EP, EP and UA and AA and UA, respectively, which was large enough to determine AA, EP and UA individually and simultaneously. The catalytic peak current obtained, was linearly dependent on the AA, EP and UA concentrations in the range of 2.0 x 10(-5) to 1.0 x 10(-3) mol l(-1), 2.0 x 10(-6) to 8.0 x 10(-5) mol l(-1) and 5.0 x 10(-6) to 3.0 x 10(-4) mol l(-1), and the detection limits for AA, EP and UA were 7.0 x 10(-6), 2.0 x 10(-7) and 6.0 x 10(-7) mol l(-1), respectively. The modified electrode shows good sensitivity, selectivity and stability, and has been applied to the determination of EP in practical injection samples and that of EP, UA and AA simultaneously with satisfactory results.  相似文献   

9.
Positively charged Ni-Al layered double hydroxide nanosheets (Ni-Al LDHNS) have been used for the first time as matrices for immobilization of horseradish peroxidase (HRP) in order to fabricate enzyme electrodes for the purpose of studying direct electron transfer between the redox centers of proteins and underlying electrodes. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) revealed that the HRP-Ni-Al LDHNS film had an ordered structure and that HRP was intercalated into Ni-Al LDHNS with a monolayer arrangement. Field emission scanning electron microscopy (FESEM) showed that the HRP-Ni-Al LDHNS film had a uniform, porous morphology. UV-vis spectroscopy indicated that the intercalated HRP retained its native structure after incorporation in the Ni-Al LDHNS film. The immobilized HRP in Ni-Al LDHNS on the surface of a glassy carbon electrode (GCE) exhibited good direct electrochemical and electrocatalytic responses to the reduction of hydrogen peroxide (H(2)O(2)) and trichloroacetic acid (TCA). The resulting H(2)O(2) biosensor showed a wide linear range from 6.00x10(-7)M to 1.92x10(-4)M, low detection limit (4.00x10(-7)M) and good stability. The results show that Ni-Al LDHNS provide a novel and efficient platform for the immobilization of enzymes and realizing direct electrochemistry and that the materials have potential applications in the fabrication of third-generation biosensors.  相似文献   

10.
A new type of sol-gel/organic hybrid composite material based on the cross-linking of natural polymer chitosan with (3-aoryloxypropyl) dimethoxymethylsilane was developed for the fabrication of an amperometric H(2)O(2) biosensor. The composite film was used to immobilize horseradish peroxidase (HRP) on a gold disk electrode. The properties of sol-gel/chitosan and sol-gel/chitosan-HRP films have been carefully characterized by atomic force microscopy and Fourier transform infrared. By using fluorescent label, a protein density on sol-gel/chitosan has been calculated to be 3.14 x 10(12) moleculescm(-2). With the aid of catechol mediator, the biosensor had a fast response of less than 2 s with linear range of 5.0 x 10(-9)-1.0 x 10(-7) mol l(-1) and a detection limit of 2 x 10(-9) mol l(-1). Its current response shows a typical Michaelis-Menten mechanism. The apparent Michaelis-Menten constant K(M)(app) is found to be 1.30 micromol l(-1). The activation energy for enzymatic reaction is calculated to be 8.22 kJ mol(-1). The biosensor retained approximately 75% of its original activity after about 60 days of storage in a phosphate buffer at 4 degrees C.  相似文献   

11.
A choline (CHO) biosensor based on the determination of H(2)O(2) generated at the electrode surface by the enzyme choline oxidase (CHOx) was developed. The biosensor consisted of CHOx retained onto a horseradish peroxidase (HRP) immobilized solid carbon paste electrode (sCPE). The HRPsCPE contained the molecule phenothiazine as redox mediator and CHOx was physically retained on the electrode surface using a dialysis membrane. Several parameters have been studied such as, mediator amount, influence of applied potential, etc. The CHO measurements were performed in 0.1 M phosphate buffer, pH 7.4. Amperometric detection of CHO was realized at an applied potential of 0.0 mV vs Ag/AgCl. The response is linear over the concentration range 5.0x10(-7)-7.0x10(-5) M, with a detection limit of 1.0x10(-7) M. This biosensor was used to detect choline released from phosphatidylcholine (PC) by phospholipase D (PLD) in isolated rat salivary gland cells stimulated by a purinergic agonist (ATP).  相似文献   

12.
The enzyme horseradish peroxidase (HRP) has been entrapped in situ by electropolymerization of pyrrole onto a platinum electrode. The latter was previously coated by a polypyrrole layer for better adhesion of the biocatalyst film and in order to avoid the enzyme folding onto the Pt electrode. The biosensor allowed the determination of hydrogen peroxide in the concentration range comprised between 4.9 x 10(-7) and 6.3 x 10(-4) M. The biosensor retained more than 90% of its original activity after 35 days of use.  相似文献   

13.
The direct electrochemistry of lactate dehydrogenase (LDH) immobilized in silica sol-gel film on gold electrode was investigated, and an obvious cathodic peak at about -200 mV (versus SCE) was found for the first time. The LDH-modified electrode showed a surface controlled irreversible electrode process involving a one electron transfer reaction with the charge-transfer coefficient (alpha) of 0.79 and the apparent heterogeneous electron transfer rate constant (K(s)) of 3.2 s(-1). The activated voltammetric response and decreased charge-transfer resistance of Ru(NH(3))(6)(2+/3+) on the LDH-modified electrode provided further evidence. The surface morphologies of silica sol-gel and the LDH embedded in silica sol-gel film were characterized by SEM. A potential application of the LDH-modified electrode as a biosensor for determination of lactic acid was also investigated. The calibration range of lactic acid was from 2.0 x 10(-6) to 3.0 x 10(-5) mol L(-1) and the detection limit was 8.0 x 10(-7) mol L(-1) at a signal-to-noise ratio of 3. Finally, the effect of environmental pollutant resorcinol on the direct electrochemical behavior of LDH was studied. The experimental results of voltammetry indicated that the conformation of LDH molecule was altered by the interaction between LDH and resorcinol. The modified electrode can be applied as a biomarker to study the pollution effect in the environment.  相似文献   

14.
A novel bienzyme-channeling sensor was constructed by entrapping glucose oxidase (GOD) and horseradish peroxidase (HRP) in the mesopores of well-ordered hexagonal mesoporous silica structures (SBA-15). The SBA-15 mesoporous materials accelerated the electron transfer between the entrapped HRP and electrode. Both HRP and GOD retained their catalytic activities in the bienzyme-entrapped SBA-15 film. In presence of glucose the enzymatic reaction of GOD-glucose-dissolved oxygen system generated hydrogen peroxide in the bienzyme-entrapped mesopores, which was immediately reduced at -0.40 V by an electrocatalytic reaction with the HRP entrapped in the same mesopore to lead to a sensitive and fast amperometric response. Thus the bienzyme channeling could be used for the detection of glucose with excellent performance without the addition of any mediator. Optimization of the experimental parameters was performed with regard to pH, operating potential and temperature. The detection limit was down to 2.7 x 10(-7)M with a very wide linear range from 3.0 x 10(-6) to 3.4 x 10(-2)M. The constructed bienzyme channeling provided a strategy for amperometric detection of oxidase substrates by co-entrapping the corresponding oxidase and HRP in the mesoporous materials.  相似文献   

15.
Direct electron transfer of immobilized horseradish peroxidase on gold colloid and its application as a biosensor were investigated by using electrochemical methods. The Au colloids were associated with a cysteamine monolayer on the gold electrode surface. A pair of redox peaks attributed to the direct redox reaction of horseradish peroxidase (HRP) were observed at the HRP/Au colloid/cysteamine-modified electrode in 0.1 M phosphate buffer (pH 7.0). The surface coverage of HRP immobilized on Au colloid was about 7.6 x 10(-10) mol/cm(2). The sensor displayed an excellent electrocatalytic response to the reduction of H(2)O(2) without the aid of an electron mediator. The calibration range of H(2)O(2) was 1. 4 microM to 9.2 mM with good linear relation from 1.4 microM to 2.8 mM. A detection limit of 0.58 microM was estimated at a signal-to-noise ratio of 3. The sensor showed good reproducibility for the determination of H(2)O(2). The variation coefficients were 3. 1 and 3.9% (n = 10) at 46 microM and 2.8 mM H(2)O(2), respectively. The response showed a Michaelis-Menten behavior at higher H(2)O(2) concentrations. The K(app)(M) value for the H(2)O(2) sensor was found to be 2.3 mM.  相似文献   

16.
A novel nafion-riboflavin membrane was constructed and characterized by the scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-visible spectroscopy and cyclic voltammetric techniques. The estimated average diameter of the designed nanoparticles was about 60 nm. The functional membrane showed a quasi-reversible electrochemical behaviour with a formal potential of -562 +/- 5 mV (vs Ag/AgCl) on the gold electrode. Some electrochemical parameters were estimated, indicating that the system has good and stable electron transfer properties. Moreover, horseradish peroxidase (HRP) was immobilized on the riboflavin-nafion functional membrane. The electrochemical behaviour of HRP was quasi-reversible with a formal potential of 80 +/- 5 mV (vs Ag/AgCl). The HRP in the film exhibited good catalytic activity towards the reduction of H2O2. It shows a linear dependence of its cathodic peak current on the concentration of H2O2, ranging from 10 to 300 (micro)M.  相似文献   

17.
The Reaction Rates of NO with Horseradish Peroxidase Compounds I and II   总被引:1,自引:0,他引:1  
In this study the reactions between nitric oxide (NO) and horseradish peroxidase (HRP) compounds I and II were investigated. The reaction between compound I and NO has biphasic kinetics with a clearly dominant initial fast phase and an apparent second-order rate constant of (7.0 +/- 0.3) x 10(5) M(-1) s(-1) for the fast phase. The reaction of compound II and NO was found to have an apparent second-order rate constant of k(app) = (1.3 +/- 0.1) x 10(6) M(-1) s(-1) or (7.4 +/- 0.7) x 10(5) M(-1) s(-1) when measured at 409 nm (the isosbestic point between HRP and HRP-NO) and 419 nm (lambda(max) of compound II and HRP-NO), respectively. Interestingly, the reaction of compound II with NO is unusually high relative to that of compound I, which is usually the much faster reaction. Since horseradish peroxidase is prototypical of mammalian peroxidases with respect to the oxidation of small substrates, these results may have important implications regarding the lifetime and biochemistry of NO in vivo after inflammation where both NO and H(2)O(2) generation are increased several fold.  相似文献   

18.
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate gel matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O2 and H2O2, which is superior to that immobilized in silica sol-gel film.  相似文献   

19.
A novel organic-inorganic nanocomposite of methylene blue (MB) and silicon oxide was synthesized and characterized by TEM, FTIR, and UV-vis. The as-prepared material was able to transfer the electron of the MB to electrode and was different from other SiO2 spheres structurally. It can be used as mediator to construct a biosensor with horseradish peroxidase (HRP) coimmobilized in the gelatine matrix and cross-linked with formaldehyde. The resulting biosensor exhibited fast amperometric response and good stability to hydrogen peroxide (H2O2). The linear range for H2O2 determination was from 1 x 10(-5) to 1.2 x 10(-3) M, with a detection limit of 4 x 10(-6) M based on S/N = 3. Moreover, the lifetime is more than 3 months under dry conditions at 4 degrees C.  相似文献   

20.
一氧化氮的释放对海马脑片CA1区痫样放电的影响   总被引:4,自引:0,他引:4  
Lu W  Chen G  Cheng JS 《生理学报》1998,50(5):507-513
用自制的一氧化氮(NO)敏感电极-Nafion-壳聚糖合镍修饰铂电极(Nafion-CTS(Ni)-Pt)连续测定了青霉素致痫海马脑片CA1区锥体层神经元NO的释放,并同时观察了NO合酶抑制剂7-nitro-indazole(7-NI)及N^ω-nitro-L-arginine(L-NNA)对诱发痫波及NO释放量的影响。研究观察到:(1)在青霉素致痫脑片模型上,诱发的痫波随青霉素浓度的增加而增多,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号