首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human and non-human animals are capable of using basic geometric information to reorient in an environment. Geometric information includes metric properties associated with spatial surfaces (e.g., short vs. long wall) and left-right directionality or 'sense' (e.g. a long wall to the left of a short wall). However, it remains unclear whether geometric information is encoded by explicitly computing the layout of surface geometry or by matching images of the environment. View-based spatial encoding is generally thought to hold for insect navigation and, very recently, evidence for navigation by geometry has been reported in ants but only in a condition which does not allow the animals to use features located far from the goal. In this study we tested the spatial reorientation abilities of bumblebees (Bombus terrestris). After spatial disorientation, by passive rotation both clockwise and anticlockwise, bumblebees had to find one of the four exit holes located in the corners of a rectangular enclosure. Bumblebees systematically confused geometrically equivalent exit corners (i.e. corners with the same geometric arrangement of metric properties and sense, for example a short wall to the left of a long wall). However, when one wall of the enclosure was a different colour, bumblebees appeared to combine this featural information (either near or far from the goal) with geometric information to find the correct exit corner. Our results show that bumblebees are able to use both geometric and featural information to reorient themselves, even when features are located far from the goal.  相似文献   

2.
Modeling the effects of enclosure size on geometry learning   总被引:1,自引:1,他引:0  
Several recent studies have shown that chickens, fish, and humans trained to find a reward in a corner of a rectangular enclosure with distinctive features rely more on the geometry of the enclosure in small enclosures and rely more on the features in large enclosures. Here, these results are modeled using a recent associative model of geometry learning [Miller, N.Y., Shettleworth, S.J., 2007. Learning about environmental geometry: an associative model. J. Exp. Psychol. Anim. B 33, 191–212]. By adjusting the salience of either geometric or featural information or both the model is capable of reproducing much of the data on the effects of enclosure size on geometry learning.  相似文献   

3.
Unlike investigations of animals’ use of spatial cues such as landmarks, studies of sensitivity to the geometry of surfaces in an enclosure have proceeded mostly as an attempt to explain a laboratory finding with few direct tests of how animals use such a cue in nature. In this brief review, I discuss the current debate over whether global or local information from the enclosure drives the typical rotational error pattern in such studies. A consideration of the form and function of geometric cues in natural settings suggests that the natural boundaries for which arena walls are considered analogous might better be thought as landmarks. With a clearer picture of what geometric information is and how it might be used in nature, the generality of findings from laboratory studies of geometry enclosure can be better assessed.  相似文献   

4.
PURPOSE: Recently, some numerical and experimental studies of blood flow in large arteries have attempted to accurately replicate in vivo arterial geometries, while others have utilized simplified models. The objective of this study was to determine how much an anatomically realistic geometry can be simplified without the loss of significant hemodynamic information. METHOD: A human femoral-popliteal bypass graft was used to reconstruct an anatomically faithful finite element model of an end-to-side anastomosis. Nonideal geometric features of the model were removed in sequential steps to produce a series of successively simplified models. Blood flow patterns were numerically computed for each geometry, and the flow and wall shear stress fields were analyzed to determine the significance of each level of geometric simplification. RESULTS: The removal of small local surface features and out-of-plane curvature did not significantly change the flow and wall shear stress distributions in the end-to-side anastomosis. Local changes in arterial caliber played a more significant role, depending upon the location and extent of the change. The graft-to-host artery diameter ratio was found to be a strong determinant of wall shear stress patterns in regions that are typically associated with disease processes. CONCLUSIONS: For the specific case of an end-to-side anastomosis, simplified models provide sufficient information for comparing hemodynamics with qualitative or averaged disease locations, provided the "primary" geometric features are well replicated. The ratio of the graft-to-host artery diameter was shown to be the most important geometric feature. "Secondary" geometric features such as local arterial caliber changes, out-of-plane curvature, and small-scale surface topology are less important determinants of the wall shear stress patterns. However, if patient-specific disease information is available for the same arterial geometry, accurate replication of both primary and secondary geometric features is likely required.  相似文献   

5.
The macroscopic, three-dimensional surface layout geometry of an enclosure apparently provides a different contribution for spatial reorientation than the geometric cues associated with freestanding objects arranged in arrays with similar geometric shape. Here, we showed that a unitary spatial representation can account for the capability of animals to reorient both by extended surfaces and discrete objects in a small-scale spatial task. We trained domestic chicks to locate a food-reward from an opening on isolated cylinders arranged either in a geometrically uninformative (square-shaped) or informative (rectangular-shaped) arrays. The arrays were located centrally within a rectangular-shaped enclosure. Chicks trained to access the reward from a fixed position of openings proved able to reorient according to the geometric cues specified by the shape of the enclosure in all conditions. Chicks trained in a fixed position of opening with geometric cues provided both by the arena and the array proved able to reorient according to each shape separately. However, chicks trained to access the reward from a variable position of openings failed to reorient. The results suggest that the physical constrains associated with the presence of obstacles in a scene, rather than their apparent visual extension, are crucial for spatial reorientation.  相似文献   

6.
In two experiments, human participants searched in dynamic three-dimensional virtual-environment rectangular enclosures. Unlike previous studies involving learning of features and geometry, we trained features and geometry separately before placing them in conflict. Specifically, participants learned to respond to rewarded features located along the principle axis of a rectangular search space and to respond to rewarded geometry of a rectangular search space in separate training phases followed by a single test trial. During the test trial, features and geometry were placed in conflict by situating rewarded bins during feature training in unrewarded geometric corners from geometry training and unrewarded bins during feature training in rewarded geometric corners from geometry training. Results of Experiment 1 indicated that although all participants learned features and geometry at an equivalent rate and to an equivalent level, performance during the test trial indicated no preferential responding to features or geometry. However, choice reaction time was significantly longer during the test trial compared to that of last feature and last geometry training trials. Experiment 2 attempted to dissociate information content of features and geometry from their acquired associative strength by rewarding only one geometric corner during geometry training. Results of Experiment 2 indicated that although features had presumably acquired greater associative strength relative to that of geometry by the end of training, performance during the test trial indicated no preferential responding to features or geometry. As in Experiment 1, choice reaction time was significantly longer during the test trial compared to that of last feature and last geometry training trials. Collectively, results seem to provide converging evidence against a view-based matching account of spatial learning, appear inconsistent with standard associative-based accounts of spatial learning, and suggest that information content of spatial cues may play an important role in spatial learning.  相似文献   

7.
Acoustic frequency (pitch) cues are known to be important in the recognition of conspecific song in a number of songbird species. Mountain chickadees (Poecile gambeli) and black-capped chickadees (Poecile atricapillus) are sympatric over parts of their ranges and their species-typical songs share many features. I examined the acoustic characteristics of song of these two congeners in a region of sympatry in southern Alberta, Canada. As reported for other populations in allopatry, black-capped chickadees emphasized relative frequency cues in song production. In particular, variation in the ratios between note frequencies was significantly less than variation in the note frequencies themselves. In contrast, songs of mountain chickadees did not have constant frequency ratios and contained an introductory acoustic element absent in black-capped chickadee song. Both species may rely on song note frequency or the presence of this introductory acoustic element when differentiating between conspecific song and heterospecific song. Song measures for chickadees in sympatry were similar to measures in allopatry, providing little evidence for character displacement in song production.  相似文献   

8.
Sparse geometric information from limited field-of-view medical images is often used to reconstruct the femur in biomechanical models of the hip and knee. However, the full femur geometry is needed to establish boundary conditions such as muscle attachment sites and joint axes which define the orientation of joint loads. Statistical shape models have been used to estimate the geometry of the full femur from varying amounts of sparse geometric information. However, the effect that different amounts of sparse data have on reconstruction accuracy has not been systematically assessed. In this study, we compared shape model and linear scaling reconstruction of the full femur surface from varying proportions of proximal and distal partial femur geometry in combination with morphometric and landmark data. We quantified reconstruction error in terms of surface-to-surface error as well as deviations in the reconstructed femur’s anatomical coordinate system which is important for biomechanical models. Using a partial proximal femur surface, mean shape model-based reconstruction surface error was 1.8 mm with 0.15° or less anatomic axis error, compared to 19.1 mm and 2.7–5.6° for linear scaling. Similar results were found when using a partial distal surface. However, varying amounts of proximal or distal partial surface data had a negligible effect on reconstruction accuracy. Our results show that given an appropriate set of sparse geometric data, a shape model can reconstruct full femur geometry with far greater accuracy than simple scaling.  相似文献   

9.
Species recognition is essential for efficient communication between conspecifics. For this to occur, species information must be unambiguously encoded in the repertoire of each species’ vocalizations. Until now, the study of species recognition in songbirds has been focused mainly on male songs and male territorial behaviour. Species recognition of other learned vocalizations, such as calls, have not been explored, and could prove useful as calls are used in a wider range of contexts. Here, we present an experimental field study investigating the coding of species information in a learned vocalization, the ‘chick-a-dee’ call of the black-capped chickadee (Poecile atricapillus). By modifying natural calls in both temporal and spectral domains and by observing the vocal responses of black-capped chickadees following the playback of these modified calls, we demonstrate that species recognition in chickadees relies on several acoustic features including syntax, frequency modulation, amplitude modulation, and to a lesser extent, call rhythmicity and frequency range.  相似文献   

10.
Victory displays are behaviours that occur after the conclusion of a signaling contest, performed solely by the contest winner. Victory displays may reinforce the dominance of the winner either to the loser or to other conspecifics within signaling range. Victory displays are poorly studied despite the significant consequences that post-conflict behaviour may have on the individuals involved. We examined the period immediately following 50 territorial countersinging contests between males in 10 neighbourhoods of black-capped chickadees (Poecile atricapillus) of known dominance rank. We characterized the post-contest singing behaviour of chickadees and evaluated whether post-contest behaviour is consistent with victory displays. Using a 16-microphone acoustic location system to simultaneously record entire neighbourhoods of breeding chickadees, we isolated 50 dyadic countersinging contests and measured the vocal behaviour of the contestants in the minutes following each interaction. Eighty-six percent of contests were followed by a period of solo singing by one of the contestants, while 14% were followed by silence. The post-contest singer was most often the contestant who held a subordinate dominance position in the previous winter’s dominance hierarchy; dominant males performed post-contest song bouts significantly less often. Asymmetry in overlapping between contestants did not predict which bird sang a post-contest bout. However, in a significant majority of cases, the post-contest singer was pitch-matched by his opponent during the contest more than he pitch-matched his opponent. Our results indicate that male chickadees do not perform acoustic victory displays after countersinging contests. In contrast, the post-contest behaviour of territorial chickadees is more consistent with a “loser display”.  相似文献   

11.
When caring for their young, parents must compensate for threats to offspring survival in a manner that maximizes their lifetime reproductive success. In birds, parents respond to offspring threats by altering reproductive strategies throughout the breeding attempt. Because altered reproductive strategies are costly, when threats to offspring are limited, parents should exhibit a limited response. However, it is unclear if response to offspring threat is the result of an integrated set of correlated changes throughout the breeding attempt or if responses are a flexible set of dissociable changes that are stage‐specific. We test these hypotheses in a system where house wrens (Troglodytes aedon) compete for nesting cavities with Carolina chickadees (Poecile carolinensis) by usurping and destroying their nests during the early stage of the breeding attempt (the egg stage). Due to the specificity of the house wren threat, we can test whether parental responses to an offspring threat show flexibility and stage specificity or if parental strategies are an integrated and persistent response. We monitored nests in a natural population to compare life history traits of chickadees nesting in boxes that were in the presence of house wrens to chickadees nesting in boxes that did not overlap with house wrens. Carolina chickadees that nested near house wrens laid significantly smaller clutch sizes (early change in reproductive strategy) but did not alter nestling provisioning or nestling stage length (late change in reproductive strategy), suggesting that chickadees respond in a flexible and stage‐specific manner to the threat of house wrens. By responding only when a threat is highest, parents minimize the cost of antithreat responses. Our study suggests that parents can respond in subtle and nuanced ways to offspring threats in the environment and specifically alter reproductive behaviors at the appropriate stage.  相似文献   

12.
Black‐capped chickadees (Poecile atricapillus) and mountain chickadees (P. gambeli) have a similar vocal repertoire and share many other life history traits; yet, black‐capped chickadees are socially dominant to mountain chickadees where populations overlap. Previous research suggested that in contact zones, both species respond weakly to heterospecific songs during the breeding season, and have suggested minimal interspecific competition. However, both black‐capped and mountain chickadees discriminate between conspecific and heterospecific chick‐a‐dee calls, suggesting attention is paid to interspecific signals. We compared the responses of both black‐capped and mountain chickadees to conspecific and heterospecific chick‐a‐dee calls during the winter, when both species compete for the same food resources. We conducted an aviary playback experiment exposing both species to playback composed of heterospecific and conspecific chick‐a‐dee calls, which had been recorded in the context of finding food sources. Responses from the tested birds were measured by recording vocalizations and behaviour. Black‐capped chickadees responded significantly more to conspecific than to heterospecific stimuli, whereas the subordinate mountain chickadees responded to both mountain and black‐capped chickadee calls. Based upon the reactions to playbacks, our results suggest these two closely related species may differ in their perception of the relative threat associated with intra‐ versus interspecific competitors.  相似文献   

13.
Here we compare whether birds encode surface geometry using principal axes, medial axes or local geometry. Birds were trained to locate hidden food in two geometrically identical corners of a rectangular arena and subsequently tested in an L-shaped arena. The chicks showed a primary local geometry strategy, and a secondary medial axes strategy, whereas the pigeons showed a medial axes strategy. Neither species showed behaviour supportive of the use of principal axes. This is, to our knowledge, the first study to directly examine these three current theories of geometric encoding.  相似文献   

14.
Spatial reorientation by layout geometry occurs in numerous species, but its underlying mechanisms are debated. While some argue that navigating animals' sense of place is based on geometric computations over three-dimensional representations, others claim it depends on panoramic image-matching processes. Because children reorient by subtle three-dimensional perturbations of the terrain and not by salient two-dimensional brightness contours on surfaces or freestanding columns, children's sense of place cannot be explained by image matching. To test image-matching theories in a different species, the present experiment investigates the reorientation performance of domestic chicks (Gallus gallus) in environments similar to those used with children. Chicks, like children, spontaneously reoriented by geometric relationships of subtle three-dimensional terrains, and not by salient two-dimensional brightness contours on surfaces or columns. These findings add to the evidence for homologous navigation systems in humans and other vertebrates, and they cast doubt on image-matching theories of reorientation in these species.  相似文献   

15.
Birds that nest in cavities may regulate nest microclimate by orienting their nest entrance relative to the sun or prevailing winds. Alternatively, birds may orient their nest entrance relative to conspecific individuals around them, especially if the acoustic properties of cavities permit nesting birds to better hear individuals in front of their nest. We measured the cavity entrance orientation of 132 nests and 234 excavations in a colour‐banded population of black‐capped chickadees Poecile atricapillus for which the reproductive behaviour of nesting females was known. Most chickadees excavated cavities in rotten birch Betula papyrifera, aspen Populus tremuloides and maple Acer saccharum. Nest cavities showed random compass orientation around 360° demonstrating that chickadees do not orient their cavities relative to the sun or prevailing winds. We also presented chickadees with nest boxes arranged in groups of four, oriented at 90° intervals around the same tree. Nests constructed in these nest box quartets also showed random compass orientation. To test the acoustic properties of nest cavities, we conducted a sound transmission experiment using a microphone mounted inside a chickadee nest. Re‐recorded songs demonstrate that chickadee nest cavities have directional acoustic properties; songs recorded with the cavity entrance oriented towards the loudspeaker were louder than songs recorded with the cavity entrance oriented away from the loudspeaker. Thus, female chickadees, who roost inside their nest cavity in the early morning during their fertile period, should be better able to hear males singing the dawn chorus in front of their nest cavity. Using GIS analyses we tested for angular‐angular correlation between actual nest cavity orientation and the azimuth from the nest tree to the territories and nest cavities of nearby males. In general, nest cavity entrances showed no angular‐angular correlation with neighbourhood territory features. However, among birds who followed a mixed reproductive strategy and nested in the soft wood of birch and aspen trees, nest cavity entrances were oriented towards their extra‐pair partners. We conclude that nest cavity orientation in birds may be influenced by both ecological and social factors.  相似文献   

16.
The study of hybrid zones can provide insight into the genetic basis of species differences that are relevant for the maintenance of reproductive isolation. Hybrid zones can also provide insight into climate change, species distributions, and evolution. The hybrid zone between black-capped chickadees (Poecile atricapillus) and Carolina chickadees (Poecile carolinensis) is shifting northward in response to increasing winter temperatures but is not increasing in width. This pattern indicates strong selection against chickadees with admixed genomes. Using high-resolution genomic data, we identified regions of the genomes that are outliers in both time points and do not introgress between the species; these regions may be involved in the maintenance of reproductive isolation. Genes involved in metabolic regulation processes were overrepresented in this dataset. Several gene ontology categories were also temporally consistent—including glutamate signaling, synaptic transmission, and catabolic processes—but the nucleotide variants leading to this pattern were not. Our results support recent findings that hybrids between black-capped and Carolina chickadees have higher basal metabolic rates than either parental species and suffer spatial memory and problem-solving deficits. Metabolic breakdown, as well as spatial memory and problem-solving, in hybrid chickadees may act as strong postzygotic isolation mechanisms in this moving hybrid zone.  相似文献   

17.
Tkacik G  Magnasco MO 《Bio Systems》2008,93(1-2):90-100
It is widely acknowledged that detailed timing of action potentials is used to encode information, for example, in auditory pathways; however, the computational tools required to analyze encoding through timing are still in their infancy. We present a simple example of encoding, based on a recent model of time-frequency analysis, in which units fire action potentials when a certain condition is met, but the timing of the action potential depends also on other features of the stimulus. We show that, as a result, spike-triggered averages are smoothed so much that they do not represent the true features of the encoding. Inspired by this example, we present a simple method, differential reverse correlations, that can separate an analysis of what causes a neuron to spike, and what controls its timing. We analyze with this method the leaky integrate-and-fire neuron and show the method accurately reconstructs the model's kernel.  相似文献   

18.
19.
Basepair stacking calculations have been carried out to understand the conformational polymorphism of DNA and its sequence dependence. The recently developed self-consistent parameter set, which is specially suitable for describing irregular DNA structures, has been used to describe the geometry of a basepair doublet. While for basepairs without any propeller, the favourable stacking patterns do not appear to have very strong features, much more noticeable sequence dependent stacking patterns emerge once a propeller is applied to the basepairs. The absolute minima for most sequences occurs for a doublet geometry close to the B-DNA fibre models. Hence in the B-DNA region, no strong sequence dependent features are found, but the range of doublet geometries observed in the crystal structures generally lie within the low energy contours, obtained from stacking energy calculations. The doublet geometry corresponding to the A-DNA fibre model is not energetically favourable for the purine-pyrimidine sequences, which prefer small roll angle values when the slide has a large negative value as in A-DNA. However positive roll with large negative slide is allowed for GG, GA, AG and the pyrimidine-purine steps. This is consistent with the observed geometries of various steps in A-DNA crystals. Thus the general features of the basepair doublets predicted from these theoretical studies agree very well with the results from crystal structure analysis. However, since most sequences show an overall preference for B-type doublet geometry, the B----A transition for random sequence DNA cannot be explained on the basis of basepair stacking interactions.  相似文献   

20.
The interaction between the two main competing geometric determinants of teeth (the geometry of function and the geometry of occlusion) were investigated through the construction of three-dimensional spatial models of several mammalian tooth forms (carnassial, insectivore premolar, zalambdodont, dilambdodont, and tribosphenic). These models aim to emulate the shape and function of mammalian teeth. The geometric principles of occlusion relating to single- and double-crested teeth are reviewed. Function was considered using engineering principles that relate tooth shape to function. Substantial similarity between the models and mammalian teeth were achieved. Differences between the two indicate the influence of tooth strength, geometric relations between upper and lower teeth (including the presence of the protocone), and wear on tooth morphology. The concept of "autocclusion" is expanded to include any morphological features that ensure proper alignment of cusps on the same tooth and other teeth in the tooth row. It is concluded that the tooth forms examined are auto-aligning, and do not require additional morphological guides for correct alignment. The model of therian molars constructed by Crompton and Sita-Lumsden ([1970] Nature 227:197-199) is reconstructed in 3D space to show that their hypothesis of crest geometry is erroneous, and that their model is a special case of a more general class of models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号