首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Seasonal population dynamics and the vertical distribution ofciliates were studied in relation to the particular food resourcesoccurring in a humic and moderately acidic lake (Lake Vassivière).The abundance (1.4 x 103–20.4 x 103 cells l–1 mean= 4.8 x 103 cells l–1) and biomass (0.5–34.6 µgC l–1, mean = 6.0 µg C l–1) of ciliated protozoawere low and close to values reported for oligotrophic environments.The species composition of the population varied greatly withdepth. Whereas large-sized species of oligotrichs, some of whichwere mixotrophic, dominated at the surface, haptorids were bestrepresented in deep waters. The spatial distribution of thevarious groups of ciliates was largely determined by light andthe vertical distribution of microbial food resources (detritus,bacteria, algae) within the water column of this brown-coloredlake.  相似文献   

2.
The pattern of biomass and abundance of microzooplankton andmesozooplankton were studied over an annual cycle in the NuecesEstuary, Texas. Zooplankton samples and associated hydrographicdata were collected at four locations at biweekly intervalsfrom September 1987 through October 1988. This is a broad, shallowbay system with an average depth of 2.4 m. The concentrationof chlorophyll a in the surface waters averaged 7.4 µgl–1with 85% passing through a 20 µ mesh. Microzooplankton(20–200 µ in length) were extremely abundant throughoutthis study. Abundances of ciliates (including both aloricateciliates and tintinnids) ranged from 5000 to 400 000 l,with a mean of 38 000 l–1 of seawater over the entirecourse of the study. Mesozooplankton (200–2000 µmin length) abundance averaged 6100 m–3 for samples collectedduring the day and 10 100 m–3 for samples collected atnight. Mesozooplankton were dominated by Acartia tonsa whichmade up {small tilde}50% of the total. Biomass estimates formicrozooplankton (based on volume estimates) were often higherthan measured biomass of mesozooplankton. Given the shortergeneration times and higher metabolic rate of microzooplanktoncompared to mesozooplankton, microzooplankton should have agreater effect on the trophic dynamics of the Nueces Estuarythan mesozooplankton.  相似文献   

3.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

4.
Grazing by microzooplankton on autotrophic and heterotrophicpicoplankton as well as >0.7 µm phytoplankton (as measuredby chlorophyll a) was quantified during July, August, October,January and April in the surface layer of Logy Bay, Newfoundland(47°38'14'N, 52°39'36'W). Rates of growth and grazingmortality of bacteria, Synechococcus and >0.7 µm phytoplanktonwere measured using the sea water dilution technique. Microzooplanktoningested 83–184, 96–366 and 64–118% of bacterial,Synechococcus and >0.7 µm phytoplankton daily potentialproduction, respectively and 34–111, 25–30 and 16–131%of bacterial, Synechococcus and >0.7 µm phytoplanktonstanding stocks, respectively. The trends in prey net growthrates followed the seasonal cycles of prey biomass, suggestingthat microzooplankton are important grazers in Newfoundlandcoastal waters. Ingestion was lowest during January and October(~2 µg C l–1 day–1) and highest in August(~20 µg C l–1 day–1). Aside from April when>0.7 µm phytoplankton represented the majority (~80%)of carbon ingested, bacterioplankton and <1 µm phytoplanktonrepresented most of the carbon ingested (~40–100%). Althoughmicrozooplankton have here-to-fore been unrecognized as an importantgrazer population in Newfoundland coastal waters, these resultssuggest that they play an important role in carbon flow withinthe pelagic food web, even at low temperatures in Logy Bay.  相似文献   

5.
Short-day photoperiods can increase the partitioning of assimilatesto filling seeds of soybean (Glycine max L. Merr.), resultingin higher seed growth rates. The plant growth substance ABAhas been implicated in the regulation of assimilate transferwithin filling soybean seeds. Thus, we hypothesized that anincreased concentration of endogenous ABA in seeds may enhancesucrose accumulation and seed growth rate of soybeans exposedto short-day photoperiods. Plants of cv. Hood 75 were grownin a greenhouse under an 8-h short-day photoperiod (SD) until11 d after anthesis (DAA) of the first flower, when half ofthe plants were transferred to a night-interruption (NI) treatment(3 h of low-intensity light inserted into the middle of thedark period). Plants remaining in SD throughout seed developmenthad seed growth rates 43% higher than that of plants shiftedto NI (7·6 mg seed–1 d–1 vs. 5·3 mgseed–1 d–1). On a tissue-water basis, the concentrationof ABA in SD seeds increased rapidly from 7.6 µmol l–1at 11 DAA to 65·2 µmol l–1 at 18 DAA, butthen declined to 6·6 µmol l–1 by 39 DAA.In contrast, the concentration of ABA increased more slowlyin NI seeds, reaching only 47·4 µmol l–1by 18 DAA, peaking at 57·0 µmol l–1 on 25DAA, and declining to 10·2 µmol l–1 by 39DAA. The concentration of sucrose in SD embryos peaked at 73·5mmol l–1 on 25 DAA and remained relatively constant forthe remainder of the seed-filling period. In NI, the concentrationof sucrose reached only 38·3 mmol 1–1 by 25 DAA,and peaked at 61·5 µmol l–1 on 32 DAA. Thusin both SD and NI, sucrose accumulated in embryos only afterthe peak in ABA concentration, suggesting that ABA may havestimulated sucrose movement to the seeds. The earlier accumulationof ABA and sucrose in SD suggests that ABA may have increasedassimilate availability during the critical cell-division period,thus regulating cotyledon cell number and subsequent seed growthrate for the remainder of the seed-filling period. Glycine max L. Merr. cv. Hood 75, soybean, assimilate partitioning, abscisic acid, photoperiod, source-sink  相似文献   

6.
Phytoplankton biomass, primary production rates and inorganicnutrients were measured in the uppermost layer of the ice-edgeregion and in open water and compared with environmental factorsduring a three-week cruise in September – October 1979.Biomass and production values were low (maximum 2.2 µgchl a l–1, 2.5 mg C m–3 h–1). A post-bloomcommunity of diatoms, consisting mainly of representatives ofChaetoceros, Leptocylindrus, Nitzschia and Thalassiosira, waspredominant. Concentrations of phosphate were quite low (maximum0.55 µM I–1). Nitrate and silicate ranged from nomeasurable quantities to 5.7 µM l–1 and 3.8 µMl–1, respectively. The possibility of light and nutrientlimitation on phytoplankton growth is discussed.  相似文献   

7.
Autotrophic picoplankton were highly abundant during the thermalstratification period in late July in the pelagic area (waterdepth 500–1300 m) of southern Lake Baikal; maximum numberswere 2 x 106 cells ml–1 in the euphotic zone ({small tilde}15m). Unicellular cyanobacteria generally dominated the picoplanktoncommunity, although unidentified picoplankton that fluorescedred under blue excitation were also abundant (maximum numbers4 x 105 cells ml–1) and contributed up to {small tilde}40%of the total autotrophic picoplankton on occasions. Carbon andnitrogen biomasses of autotrophic picoplankton estimated byconversion from biovolumes were 14–84 µg C l–1and 3.6–21 µg N l–1. These were comparableto or exceeded the biomass of heterotrophic bacteria. Autotropicpicoplankton and bacteria accounted for as much as 33% of paniculateorganic carbon and 81% of nitrogen in the euphotic zone. Measurementsof the photosynthetic uptake of [l4C]bicarbonate and the growthof picoplankton in diluted or size-fractionated waters revealedthat 80% of total primary production was due to picoplankton,and that much of this production was consumed by grazers inthe <20 µ.m cell-size category. These results suggestthat picoplankton-protozoan trophic coupling is important inthe pelagic food web and biogeochemical cycling of Lake Baikalduring summer.  相似文献   

8.
The abundance and biomass of the large heterotrophic dinoflagellateNoctiluca scintillans, together with the changes in its potentialprey items, were monitored in the Seto Inland Sea, Japan, duringsummer 1997 (17 July-11 August). Growth and grazing rates ofNscintillans fed natural plankton populations were also measuredeight and seven times, respectively, during the survey period.The abundance and biomass of N scintillans averaged over thewater column (19 m) were in the range 1–345 cells 1–1(temporalaverage = 93 cell1–1) and 0.1–49.6 µg C l–1(temporalaverage = 13.8 µg C l–1; three times higher thanthat of calanoid copepods during the same period). Noctilucascintillans populations followed the changes in phytoplankton:N.scintillans biomass was increasing during the period of diatomblooms and was at a plateau or decreasing during periods oflow chlorophyll a. The growth rates of N.scintillans (µ)were also consistent with the wax and wane of the N.scintillanspopulation: N.scintillans showed highest growth rates duringdiatom blooms. A simple relationship between µ and chlorophylla concentration was established, and the production of N.scintillanswas estimated using this relationship and the measured biomass.The estimated production averaged over the water column wasin the range >0.1–5.2 µg C l–1 day–1(temporalaverage = 1.4 µg C l–1 day–1; 64% of the productionof calanoid copepods during the same period). Diatom clearancerates by N.scintillans were in the range 0.10–0.35 mlcell–1 day–1, and the phytoplankton population clearanceby N.scintillans was >12% day–1. Thus, although thefeeding pressure of N.scintillans on phytoplankton standingstock was low, N.scintillans was an important member of themesozooplank-ton in terms of biomass and production in the SetoInland Sea during summer.  相似文献   

9.
Inorganic phosphorus uptake and regeneration in the OkhotskSea waters were investigated in July–August 1994 withthe use of radioisotopic techniques. The rates of PO4-P uptakeby microplankton in the upper mixed layer were between 1.5 and6.6 µg P l-1 day-1 (average 2.75) in areas of diatom dominance,and between 0.68 and 1.68 µg P l-1 day-1 (average 1.16)in areas of intense warming and summer phytoplankton minimum.The residence time of PO4-P standing stock in water at differentstations varied between 1.5 and 24 days (mean 9 days). The shareof bacterioplankton contributing to total PO4-P uptake was 50%in areas of the summer phytoplankton minimum and 20–30%in areas of diatom dominance. The PO4-P regeneration rate wasmeasured first time experimentally in the temperate sea. Itsrates varied from 0.30 to 1.65 µg P l-1 day-1. In areasof diatom dominance, it compensated with 30–60% of PO4-Puptake. In zones of summer phytoplankton minimum and in thelayers of deep chlorophyll maxima at 10–25 m depths, thePO4-P regeneration rate often exceeded its uptake. Primary phytoplanktonproduction correlated well with PO4-P uptake values in the uppermixed layer, while no correlation was found between primaryproduction and the ambient PO4-P content in water.  相似文献   

10.
In January-February 1991, in Prydz Bay, phytoplankton bloomwas evident in the inner shelf area with the dominant diatomsbeing represented mainly by pennate species of the Nitzschia-Fragilariopsisgroup. Dinoflagellates and naked flagellates were most abundantin the centre of the bay; however, larger heterotrophic speciesprevailed at the southern stations. Cell carbon values (average317 µg l–1; range 92-1048 µg l–1) foundin the bloom in the south were chiefly due to pennate diatomsand larger heterotrophic dinoflagellates. Much lower carbonvalues (average 51 µg l–1; range 7-147 µgl–1) in the outer shelf region were mainly contributedby large centric diatoms (70-110 mu;m) and small dinoflagellates(5-25 µm). Wide ranges of algal cell sizes were observedin both southern and northern communities; the overlapping ofsizes of diatoms and flagellates, the latter containing heterotrophs,suggested complex trophic relationships within the planktonand an enhanced heterotrophic activity in the south. North-to-southvariations in surface  相似文献   

11.
Ethylene at 5–80 µl l–1 inhibited elongationand induced swelling in internodes of light-grown normal anddwarf pea plants; GA3 did not prevent swelling in response toethylene. GA3 neither inhibited nor enhanced the activity of isoperoxidasesin the internodes, regardless of its effect on their elongation.Ethylene at 80 µl l–1 enhanced peroxidase in GA3-untreatedand treated normal and dwarf plants. At 5 µl l–1,ethylene had only a weak effect on peroxidase activity or none.The enzyme enhancement by ethylene was not related to its effecton cell expansion and seems do be due, at least in part, tochemical injury. Electron microscopy revealed peroxidase activity in the roughER and cell walls, including intercellular spaces. Stainingof walls in ethylene-treated tissues was more pronounced thanin untreated ones. Golgi vesicles did not seem to be involvedin the assembly of the enzyme carbohydrate moiety in ethylene-treatedcells. The peroxidase fraction extracted with 20 mM phosphate buffer,pH 6, and that extracted from wall debris with 1 M NaCl accountedfor 98% of total enzyme activity. Both fractions contained thesame six cathodic isoforms which comprised 85–90% of theiractivity. Electrophoresis did not reveal differences in thequalitative isoenzyme patterns in relation to variety, age,GA3, or ethylene. The only observed quantitative differenceswere age-dependent. Procedural artefacts during separation of protoplast and wallionically bound peroxidase fractions are discussed.  相似文献   

12.
During the ANTARES 3 cruise in the Indian sector of the SouthernOcean in October–November 1995, the surface waters ofKerguelen Islands plume, and the surface and deeper waters (30–60m) along a transect on 62°E from 48°36'S to the iceedge (58°50'S), were sampled. The phytoplankton communitywas size-fractionated (2 µm) and cell numbers, chlorophyllbiomass and carbon assimilation, through Rubisco and ß-carboxylaseactivities, were characterized. The highest contribution of<2 µm cells to total biomass and total Rubisco activitywas reported in the waters of the Permanent Open Ocean Zone(POOZ) located between 52°S and 55°S along 62°E.In this zone, the picophytoplankton contributed from 26 to 50%of the total chlorophyll (a + b + c) with an average of 0.09± 0.02 µg Chl l–1 for <2 µm cells.Picophytoplankton also contributed 36 to 64% of the total Rubiscoactivity, with an average of 0.80 ± 0.30 mg C mg Chla–1 h–1 for <2 µm cells. The picophytoplanktoncells had a higher ß-carboxylase activity than largercells >2 µm. The mixotrophic capacity of these smallcells is proposed. From sampling stations of the Kerguelen plume,a relationship was observed between the Rubisco activity perpicophytoplankton cell and apparent cell size, which variedwith the sampled water masses. Moreover, a depth-dependent photoperiodicityof Rubisco activity per cell for <2 µm phytoplanktonwas observed during the day/night cycle in the POOZ. In thenear ice zone, a physiological change in picophytoplankton cellsfavouring phosphoenolpyruvate carboxykinase (PEPCK) activitywas reported. A species succession, or an adaptation to unfavourableenvironmental conditions such as low temperature and/or availableirradiance levels, may have provoked this change. The high contributionof picophytoplankton to the total biomass, and its high CO2fixation capacity via autotrophy and mixotrophy, emphasize thestrong regeneration of organic materials in the euphotic layerin the Southern Ocean.  相似文献   

13.
Carbon (C) fixation and nitrogen (N) assimilation rates havebeen estimated from 14C and 15N techniques for a 12 month periodin a Scottish sea loch. The maximum rate of nitrogen assimilated(29.92 mmol N m–2 day–1) was in April at the mostseaward station; similar high rates were experienced duringMay at the other stations. Carbon fixation rates were maximal(488–4047 mg C m–2day–1) at the time of highphytoplankton biomass (maximum 8.3 mg m–3 chlorophylla) during May, whilst nitrate concentrations remained >0.7µ.mol l–1. C:N assimilation ratios suggest nitrogenlimitation only during the peak of the spring bloom, althoughat times nitrogen (nitrate and ammonium) concentration fellto 0.2 µmol l–1 in the following months. The verticalstability of the water column, influenced by tidal and riverineflushing, varied along the axis of the loch, resulting in markeddifferences between sampling stations. Although ammonium waspreferentially assimilated by phytoplankton, >50% of productionwas supported by nitrate uptake and only during the summer monthswas the assimilation of ammonium quantitatively important.  相似文献   

14.
From April to October 1986 abundance and vertical distributionof picocyanobacteria were studied at four stations in Kiel Fjordand Kiel Bight. Both picocyanobacteria and autotrophic, eukaryoticpicoplankton cell numbers were estimated by epifluorescencemicroscopy whereas larger phytoplankton (>3 µm) wasenumerated by the Utermöhi settling technique. Picocyanobactenacell numbers peaked in July and August near the water surface(1.4–2.6 x 108 cells l–1). Although picocyanobacteriaabundance increased from the outer Kiel Bight to the more eutrophicinner stations of Kiel Fjord, their contribution to total phytoplanktonbiomass decreased. During summer up to 52% of phytoplanktoncarbon and up to 97% of autotrophic picoplankton carbon werecontributed by picocyanobacteria. Therefore picocyanobacteriaare an important component of the summer phytoplankton communityin boreal inshore waters, too.  相似文献   

15.
Seventeen size-fractionation experiments were carried out duringthe summer of 1979 to compare biomass and productivity in the< 10, <8 and <5 µm size fractions with that ofthe total phytoplankton community in surface waters of NarragansettBay. Flagellates and non-motile ultra-plankton passing 8 µmpolycarbonate filters dominated early summer phytoplankton populations,while diatoms and dinoflagellates retained by 10 µm nylonnetting dominated during the late summer. A significant numberof small diatoms and dinoflagellates were found in the 10–8µm size fraction. The > 10 µm size fraction accountedfor 50% of the chlorophyll a standing crop and 38% of surfaceproduction. The <8 µm fraction accounted for 39 and18% of the surface biomass and production. Production by the< 8 µm fraction exceeded half of the total communityproduction only during a mid-summer bloom of microflagellates.Mean assimilation numbers and calculated carbon doubling ratesin the <8 µm (2.8 g C g Chl a–1 h–1; 0.9day–1)and<5 µm(1.7 g C g Chl a–1h–1; 0.5day–1)size fractions were consistently lower than those of the totalpopulation (4.8 g C g Chl a–1 h–1; 1.3 day–1)and the <10 µm size fraction (5.8 g C g Chl a–1h–1; 1.4 day –1). The results indicate that smalldiatoms and dinoflagellates in fractionated phytoplankton populationscan influence productivity out of proportion to their numbersor biomass. 1Present address: Australian Institute of Marine Science, P.M.B.No. 3, Townsville M.S.O., Qld. 4810, Australia.  相似文献   

16.
Stem from three- and four-week-old Soyabean [Glycine max (L.)Merr. cv. Tracy] plants reduced from 0.3 to 0.7 µmol nitrateh–l g–l f. wt. Leaf activity was 4.7–7.6 µmolnitrate h–l g–l f. wt. Outer stem was two to fourtimes more active at reducing nitrate than was inner stem. Plantnitrate nutrition had a strong effect upon the ratio of activitypresent in stem and leaf. More nitrate increased the proportionpresent in leaves. Glycine max L., soyabean, nitrate assimilation, nitrogen metabolism, Rhizobium japonicum  相似文献   

17.
The abundance and biomass of marine planktonic ciliates in BorgeBay, Signy Island, were determined at monthly intervals betweenApril 1990 and June 1991. At least 24 different ciliate taxawere recorded from samples preserved in Lugol's iodine, includingthe tintinnids Codonellopsis balechi, Cymalocylis convallaria,Laackmaniella naviculaefera and Salpingella sp., and the aloricatetaxa Didinium sp. and Mesodinium rubrum. Ciliate abundance andbiomass exhibited a clear seasonal cycle with high values duringthe austral summer and low values in the austral winter. Abundanceranged from 0.3 103l–1 in September to 2.3 103l–1in January, while biomass ranged from 0.5 µg C l–1in October to 12.6 µg C l–1 in December. Small ciliatesdominated abundance throughout the year, and biomass duringwinter. Larger ciliates contributed most to biomass during summer.Aloricate ciliates were common throughout the year, while tintinnidscontributed substantially to abundance and biomass only duringsummer. Salpingella sp. was the commonest tintinnid, but C.convallariacontributed most to tintinnid biomass. The seasonal patternof ciliate abundance and biomass matched that of chlorophylla concentration and bacterial biomass, suggesting tight trophiccoupling between ciliates and other components of the pelagicmicrobial community. 1Present address: Scott Polar Research Institute, Universityof Cambridge, Lensfield Road, Cambridge CB2 1ER, UK  相似文献   

18.
Photosynthetic 14C fixation by Characean cells in solutionsof high pH containing NaH14CO3 gave a measure of the abilityof these cells to take up bicarbonate (H14CO3). Whereascells of Nitella translucens from plants collected and thenstored in the laboratory absorbed bicarbonate at 1–1.5µµmoles cm–2 sec–1, rates of 3–8µµmoles cm–2 sec–1 were obtained withN. translucens cells from plants grown in the laboratory. Influxesof 5–6 µµmoles cm–2 sec–1 wereobtained with Chara australis, 3–8 µµmolescm–2 sec–1 with Nitellopsis obtusa, and 1–5µµmoles cm–2 sec–1 with Tolypella intricata.It is considered that these influxes represent the activityof a bicarbonate pump, which may be an electrogenic process. In solutions of lower pH, H14CO3 uptake would be maskedby rapid diffusion of 14CO2 into the cells: the four Characeanspecies fixed 14CO2 at maximum rates of 30–40 µµmolescm–2 sec–1 (at 21° C).  相似文献   

19.
Elongation of coleoptile segments, having or not having a tip,excised from rice (Oryza sativa L. cv. Sasanishiki) seedlingswas promoted by exogenous ethylene above 0.3 µl l–1as well as by IAA above 0.1 µM. Ethylene production ofdecapitated segments was stimulated by IAA above 1.0µM,and this was strongly inhibited by 1.0 µM AVG. AVG inhibitedthe IAA-stimulated elongation of the decapitated segment witha 4 h lag period, and this was completely recovered by ethyleneapplied at the concentration of 0.03 µl l–1, whichhad no effect on elongation without exogenous IAA. The effectsof IAA and ethylene on elongation were additive. These factsshow that ethylene produced in response to IAA promotes ricecoleoptile elongation in concert with IAA, probably by prolongingthe possible duration of the IAA-stimulated elongation, butthat they act independently of each other. Moreover, AVG stronglyinhibited the endogenous growth of coleoptile segments withtips and this effect was nullified by the exogenous applicationof 0.03 µl l–1 ethylene. These data imply that theelongation of intact rice coleoptiles may be regulated cooperativelyby endogenous ethylene and auxin in the same manner as foundin the IAA-stimulated elongation of the decapitated coleoptilesegments. Key words: oryza sativa, Ethylene, Auxin, Coleoptile growth  相似文献   

20.
The population abundances and rates of biomass production ofheterotrophic nanoplankton (HNAN) in Georgia coastal waterswere evaluated by epifluorescence microscopy. HNAN populations(mostly non-pigmented microflagellates <10 µm in diameter)ranged from 0.3 x 103 cells ml–1 in shelf waters 15 kmoffshore to 6.3 x 103 cells ml–1 in waters 0.25 km fromthe coast. There was a strong correlation (r = 0.83) betweenHNAN and free bacterioplankton population abundances, but noapparent relation (r = 0.38) between HNAN and phototrophic nanopLankton(PNAN) abundances. HNAN biomass production in estuarine andnearshore shelf waters, as estimated from increases in HNANpopulations during laboratory incubations of natural water samples,ranged from 0.10 to 0.79 mg C m–3 h–3, with populationgeneration times of 9.7 to 26.5 h. There was a significant linearrelation (r = 0.95) between HNAN biomass and HNAN productivity.We calculated that HNAN may graze at least 30% to 50% of dailybacterioplankton production in Georgia coastal waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号