首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The variation in habit and morphology of the twelve species of Anginon, a poorly known southern African genus of woody Apiaceae, is discussed and illustrated. The genus Glia is shown to be the obvious outgroup, sharing with Anginon two convincing synapomorphies: 1, the reduction or partial reduction of the laminar part of the leaves, and 2, the heavily cutinized outer walls of the fruit epidermis. Several characters of the internal structure of the fruit, together with other morphological characters, have been analysed by the cladistic method. Our interpretation of character evolution within the genus and a first hypothesis of phylogenetic relationships, showing three distinct infrageneric groups, is presented.  相似文献   

2.
Abstract. A study of the distribution of herbs, seedlings and vegetative propagules of woody species in a hardwood flood-plain forest along the Upper Rhine in France revealed that the occurrence of most species is significantly correlated to elevation above river level and light transmission in summer. Species confined to higher-lying sites which are only occasionally and briefly flooded in the growing season show most damage upon flooding. Tall herb species occur on sites where more than 5% daylight reaches the herb layer and they only reach a dense cover where flooding is occasional. The occurrence of woody juveniles is negatively correlated with tall herb cover and largely confined to more shaded sites or more frequently flooded sites. The results indicate that both shading and flooding are important for regeneration of woody species and for maintaining species diversity in hardwood flood-plain forests.  相似文献   

3.
Habitat patchiness and plant species richness   总被引:2,自引:0,他引:2  
The pattern of woody species richness decline with a decrease in woody vegetation cover was studied within a tallgrass prairie. The decline in species richness is highly non-linear, with a well-defined threshold below which species richness collapses. This relationship can be understood after considering information on how landscape structure changes with woody vegetation cover, and how species richness is related to landscape structure.  相似文献   

4.
Woody species colonisation in relation to habitat productivity   总被引:1,自引:1,他引:0  
Smit  R.  Olff  H. 《Plant Ecology》1998,139(2):203-209
A study was conducted to analyse the effect of habitat productivity on woody species colonisation. Three soil types were distinguished: a relatively poor sandy soil type (1), a somewhat richer sandy type (2) and a relatively rich sandy loamy type (3). Chronosequences were established on these three soil types of 38 (type 1), 20 (type 2) and 54 years (type 3) after abandonment. In total 117 vegetation relevées were used to analyse life form change and species responses during old field succession via regression models. On the rich soil type the colonisation rate of woody species was slower than on the poor soil type. This can be explained by higher abundances of perennial species during the first 20 years after abandonment on the rich soil type in contrast to the poor soil type. Perennial species may delay the woody species colonisation. First they close the bare ground which inhibits germination and next they compete with woody seedlings for light, water and nutrients. The effect of habitat productivity on woody species colonisation can only be determined appropriately by taking life history traits into account. Early successional 'pioneer' woody species dispersed by wind have less difficulties colonising old fields than late successional 'forest' species; they colonise old fields prior to the development of a dense perennial sward. Forest species depend on animals to be dispersed which are attracted by vegetation structure. In ± 30 years on the poor soil type and in ± 45 years on the rich soil type woody species become dominant relative to other life forms. Forest species like Quercus robur L. invaded relatively early (<5 years) in contrast to other studies which probably coincides with the distance to seed sources (forest edges).  相似文献   

5.
Question: Is there a light level at which alien grass biomass is reduced while still supporting growth and survival of native woody species, allowing for native species regeneration in abandoned pastures? Location: Island of Hawaii, USA. Methods: In a two‐part study we examined the effect of light availability on common native woody and alien grass species found in secondary forests in Hawaii. A field survey was conducted to examine the relationship between light availability and canopy type (open pasture, planted canopy and secondary forest) on understory grass biomass and litter accumulation. We then experimentally manipulated light levels to determine the effect of light availability on growth and survival of six native woody species and three alien grasses. Low‐light (5%), medium‐light (10%) and high‐light (20‐30%) treatments were created using shade structures erected beneath the existing secondary koa canopy. Results: In the field survey, alien grass biomass was greatest under the open pasture and lowest in the secondary forest. There was a positive correlation between understory light availability and alien grass biomass. In the experimental study, large reductions in relative growth rates were documented for all of the grass species and four of the six woody species under the lowest light level. Although growth at 5% light is substantially reduced, survival is still high (84‐100%), indicating that these species may persist under closed canopy. Conclusion: Low‐light conditions result in the greatest reduction in alien grass biomass while creating an environment in which native woody species can grow and survive.  相似文献   

6.
The African elephant (Loxodonta africana) is known to greatly affect the structure and dynamics of vegetation. In Mwea National Reserve, elephants foraged mainly on Acacia ataxacantha and Grewia bicolor out of the five most preferred woody species. However, out of the five preferred woody species, only Grewia virosa and G. bicolor showed a positive association between their fresh use and past elephant use. All the five selected woody species showed high coppicing response after foraging, with the highest coppice growth rates recorded for Acacia brevispica and lowest for Grewia tembensis. The mean heights of woody species utilized by elephants were highest for A. brevispica and lowest for G. bicolor. The mean heights of coppices emerging after utilization by elephants were not significantly different for A. ataxacantha but were significantly shorter in the rest of the foraged species. Elephants avoided the coppices of many other woody species notably C. africana, A. tortilis, A. mellifera, Combretum aculeatum among others in the reserve. The objective of this study was to understand the capacity of woody species to recover after utilization by elephants and feeding response of elephants to new woody species re‐growth; a cycle that would define the dynamics of food resources and elephant population within the reserve.  相似文献   

7.
A study was made of the vegetation of three plots used in the Nigerian Man and Biosphere Research Programme for Savanna Studies. The aim is to provide detailed information on the vegetation of the plots which may possibly contribute to an understanding of factors influencing savanna structure and relative abundances of forbs, grasses and woody species. Results show that there are differences in the species composition of the plots. There are more forb species than grass species in each plot. The woody basal areas and crown areas of the plots do not depend entirely on the density but also on the size of the woody species. There are differences in herbage yield in the plots that could be attributed to differences in soil properties, species composition and level of human and animal activities between the plots.  相似文献   

8.
The adaptive significance of nuclear DNA variation in angiosperms is still widely debated. The discussion mainly revolves round the causative factors influencing genome size and the adaptive consequences to an organism according to its growth form and environmental conditions. Nuclear DNA values are now known for 3874 angiosperm species (including 773 woody species) from over 219 families (out of a total of 500) and 181 species of woody gymnosperms, representing all the families. Therefore, comparisons have been made on not only angiosperms, taken as a whole, but also on the subsets of data based on taxonomic groups, growth forms, and environment. Nuclear DNA amounts in woody angiosperms are restricted to less than 23.54 % of the total range of herbaceous angiosperms; this range is further reduced to 6.8 % when woody and herbaceous species of temperate angiosperms are compared. Similarly, the tropical woody dicots are restricted to less than 50.5 % of the total range of tropical herbaceous dicots, while temperate woody dicots are restricted to less than 10.96 % of the total range of temperate herbaceous dicots. In the family Fabaceae woody species account for less than 14.1 % of herbaceous species. Therefore, in the total angiosperm sample and in subsets of data, woody growth form is characterized by a smaller genome size compared with the herbaceous growth form. Comparisons between angiosperm species growing in tropical and temperate regions show highly significant differences in DNA amount and genome size in the total angiosperm sample. However, when only herbaceous angiosperms were considered, significant differences were obtained in DNA amount, while genome size showed a non-significant difference. An atypical result was obtained in the case of woody angiosperms where mean DNA amount of tropical species was almost 25.04 % higher than that of temperate species, which is because of the inclusion of 85 species of woody monocots in the tropical sample. The difference becomes insignificant when genome size is compared. Comparison of tropical and temperate species among dicots and monocots and herbaceous monocots taken separately showed significant differences both in DNA amount and genome size. In herbaceous dicots, while DNA amount showed significant differences the genome size varies insignificantly. There was a non-significant difference among tropical and temperate woody dicots. In three families, i.e., Poaceae, Asteraceae, and Fabaceae the temperate species have significantly higher DNA amount and genome size than the tropical ones. Woody gymnosperms had significantly more DNA amount and genome size than woody angiosperms, woody eudicots, and woody monocots. Woody monocots also had significantly more DNA amount and genome size than woody eudicots. Lastly, there was no significant difference between deciduous and evergreen hardwoods. The significance of these results in relation to present knowledge on the evolution of genome size is discussed.  相似文献   

9.
A well‐timed phenology is essential for plant growth and reproduction, but species‐specific phenological strategies are still poorly understood. Here, we use a common garden approach to compare biannual leaf‐out data for 495 woody species growing outdoors in Munich, 90% of them not native to that climate regime. For three species, data were augmented by herbarium dates for 140‐year‐long time series. We further meta‐analysed 107 temperate‐zone woody species in which leaf‐out cues have been studied, half of them also monitored here. Southern climate–adapted species flushed significantly later than natives, and photoperiod‐ and chilling‐ sensitive species all flushed late. The herbarium method revealed the extent of species‐specific climate tracking. Our results forecast that: (1) a northward expansion of southern species due to climate warming will increase the number of late flushers in the north, counteracting documented and expected flushing time advances; and (2) photoperiod‐ and chilling‐sensitive woody species cannot rapidly track climate warming.  相似文献   

10.
The naturally regenerated native woody species diversity was studied ineucalypt plantations at Menagesha, where there was remnant natural forest, and atChancho, where natural forests were absent. A total of 22 and 20 woody speciesbelonging to 18 and 17 families were found, and of these species, treesaccounted for 68 and 55% at Menagesha and Chancho, respectively. About 83% ofthe woody species found in the adjacent natural forest, including importanttimber species were represented in the eucalypt understory at Menagesha.However, the relative abundance of species in eucalypt plantations and theadjacent natural forest varied considerably. Woody species richness andabundance of sample plots at Menagesha were on average 2.4 times and 5.7times higher, respectively, than the sample plots at Chancho. This resultdemonstrates the crucial role of the remnant small patches of natural forest,as a source of diaspores for the restoration of the woody species diversity indegraded areas of the Ethiopian highlands. There was no significant differencein woody species diversity between the eucalypt stand margin and centre. Theunderstory woody species density in eucalypt plantations was up to 8325stems/ha, indicating that the numerous eucalypt stands have a highpotential for restoring the woody species diversity in the Ethiopian highlands.In order to fully re-establish the diverse and economically valuable naturalforest, complementary measures such as enrichment planting of missing primaryforest species may be required.  相似文献   

11.
A large number of small-sized samples invariably shows that woody species are absent from forest soil seed banks, leading to a large discrepancy with the seedling bank on the forest floor. We ask: 1) Does this conventional sampling strategy limit the detection of seeds of woody species? 2) Are large sample areas and sample sizes needed for higher recovery of seeds of woody species? We collected 100 samples that were 10 cm (length) ×10 cm (width) ×10 cm (depth), referred to as larger number of small-sized samples (LNSS) in a 1 ha forest plot, and placed them to germinate in a greenhouse, and collected 30 samples that were 1 m×1 m×10 cm, referred to as small number of large-sized samples (SNLS) and placed them (10 each) in a nearby secondary forest, shrub land and grass land. Only 15.7% of woody plant species of the forest stand were detected by the 100 LNSS, contrasting with 22.9%, 37.3% and 20.5% woody plant species being detected by SNLS in the secondary forest, shrub land and grassland, respectively. The increased number of species vs. sampled areas confirmed power-law relationships for forest stand, the LNSS and SNLS at all three recipient sites. Our results, although based on one forest, indicate that conventional LNSS did not yield a high percentage of detection for woody species, but SNLS strategy yielded a higher percentage of detection for woody species in the seed bank if samples were exposed to a better field germination environment. A 4 m2 minimum sample area derived from power equations is larger than the sampled area in most studies in the literature. Increased sample size also is needed to obtain an increased sample area if the number of samples is to remain relatively low.  相似文献   

12.
Woody plant encroachment into grasslands has been globally widespread. The woody species invading grasslands represent a variety of contrasting plant functional groups and growth forms. Are some woody plant functional types (PFTs) better suited to invade grasslands than others? To what extent do local patterns of distribution and abundance of woody PFTs invading grasslands reflect intrinsic topoedaphic properties versus plant-induced changes in soil properties? We addressed these questions in the Southern Great Plains, United States at a subtropical grassland known to have been encroached upon by woody species over the past 50-100 years. A total of 20 woody species (9 tree-statured; 11 shrub-statured) were encountered along a transect extending from an upland into a playa basin. About half of the encroaching woody plants were potential N2-fixers (55% of species), but they contributed only 7% to 16 % of the total basal area. Most species and the PFTs they represent were ubiquitously distributed along the topoedaphic gradient, but with varying abundances. Overstory-understory comparisons suggest that while future species composition of these woody communities is likely to change, PFT composition is not. Canonical correspondence analysis (CCA) ordination and variance partitioning (Partial CCA) indicated that woody species and PFT composition in developing woody communities was primarily influenced by intrinsic landscape location variables (e.g., soil texture) and secondarily by plant-induced changes in soil organic carbon and total nitrogen content. The ubiquitous distribution of species and PFTs suggests that woody plants are generally well-suited to a broad range of grassland topoedaphic settings. However, here we only examined categorical and non-quantitative functional traits. Although intrinsic soil properties exerted more control over the floristics of grassland-to-woodland succession did plant modifications of soil carbon and nitrogen concentrations, the latter are likely to influence productivity and nutrient cycling and may, over longer time-frames, feed back to influence PFT distributions.  相似文献   

13.

Background and Aims

The family Balsaminaceae is essentially herbaceous, except for some woodier species that can be described as ‘woody’ herbs or small shrubs. The family is nested within the so-called balsaminoid clade of Ericales, including the exclusively woody families Tetrameristaceae and Marcgraviaceae, which is sister to the remaining families of the predominantly woody order. A molecular phylogeny of Balsaminaceae is compared with wood anatomical observations to find out whether the woodier species are derived from herbaceous taxa (i.e. secondary woodiness), or whether woodiness in the family represents the ancestral state for the order (i.e. primary woodiness).

Methods

Wood anatomical observations of 68 Impatiens species and Hydrocera triflora, of which 47 are included in a multigene phylogeny, are carried out using light and scanning electron microscopy and compared with the molecular phylogenetic insights.

Key Results

There is much continuous variation in wood development between the Impatiens species studied, making the distinction between herbaceousness and woodiness difficult. However, the most woody species, unambiguously considered as truly woody shrubs, all display paedomorphic wood features pointing to secondary woodiness. This hypothesis is further supported by the molecular phylogeny, demonstrating that these most woody species are derived from herbaceous (or less woody) species in at least five independent clades. Wood formation in H. triflora is mostly confined to the ribs of the stems and shows paedomorphic wood features as well, suggesting that the common ancestor of Balsaminaceae was probably herbaceous.

Conclusions

The terms ‘herbaceousness’ and ‘woodiness’ are notoriously difficult to use in Balsaminaceae. However, anatomical observations and molecular sequence data show that the woodier species are derived from less woody or clearly herbaceous species, demonstrating that secondary woodiness has evolved in parallel.  相似文献   

14.
Vegetation-environment relations of a Middle Zambezi floodplain   总被引:2,自引:0,他引:2  
Dunham  Kevin M. 《Plant Ecology》1989,82(1):13-24
Detrended correspondence analysis was used to study the relationships between environmental factors and the species composition of vegetation on Zambezi River alluvium downstream of the Kariba hydroelectric dam. Grass, sedge and woody species were recorded in 73 stands in Mana Pools National Park, Zimbabwe. Grass and sedge species composition was related to the soil moisture regime, as indexed by soil texture and flooding frequency. The first woody plant ordination axis was related to a stand development gradient; Acacia albida was a pioneer species on lowlying sandbanks and the woody species richness of stands increased with their height above the Zambezi River. Two-way indicator species analysis identified 7 vegetation types which could be separated on the basis of their topsoil texture and flooding frequency. The types were: sandbanks; young A. albida woodland; A. albida woodland; A. albida dominated mixed woodland; mixed riverine woodland with understory; mixed riverine woodland; and grassland on clay soils.  相似文献   

15.
A single fall-season prescribed burn and two consecutive fall-season prescribed burns were conducted in 1988 and 1989 to quantify the effects of fire intensity and frequency on woody species in two Willamette Valley wet prairies. Fuel biomass, fuel properties, fire behavior, biomass consumption, and changes in woody species density and height were documented before and after the burns. Before burning, Rosa nutkana (Nootka rose) was the most abundant woody species at both sites. In 1988, burns were significantly more intense, produced more heat per unit area at Fisher Butte than at Rose Prairie, and were fairly complete, with 37% and 35% woody biomass consumption, respectively. In 1989, burns were spotty; only 11% of woody biomass was consumed at Fisher Butte. The one-burn treatment did not affect R. nutkana density in 1 × 15 m transects at either site; the two-burn treatment significantly increased its density in three of the five communities sampled. Burning significantly reduced height growth by eliminating taller individuals while stimulating sprouts from belowground tissues. Redistribution of R. nutkana and trees into shorter height classes indicates the possibility of reducing the visual dominance of woody species if periodic burns were conducted in native Willamette Valley prairie. The low-intensity burns in this study were sufficient to remove the woody shoots under 3 m tall but did not reduce their capacity to regenerate and did not reduce the density of woody species. After decades of fire suppression, two burns were not sufficient to reestablish the desired balance between native herbaceous and woody species or to reduce the presence of introduced woody species. A long-term commitment to the reintroduction of fire as a management tool will be required to maintain native wetland prairies in the Willamette Valley.  相似文献   

16.
安徽野生木本观赏植物资源及其利用的研究   总被引:5,自引:0,他引:5  
列出了安徽具有代表性和较高观赏价值的野生木本观赏植物71科246种,重点评价了部分植物的观赏特性和园林用途对资源的进一步开发和保护提出了自己的看法。  相似文献   

17.
The woody species richness patterns in three 2–4 km long transects, approximately 1–3 km apart in a lowland (600–700 m) dryland around Lokapel in Turkana northern Kenya was analyzed in 2003 at 200–500 m intervals using the Point-Centred Quarter (PCQ) method involving 51 observation points. Transect 1 and 2 were set along ephemeral runoff channels locally known as lagga with wet season flow westwards from the Lokapel Hills to the Turkwell River. Transect 3 was a cross-cutting profile dissecting the area initially downhill from the Lokapel Hills and later gently uphill eastwards towards Lokichar. The altitude at each of the 51 observation sites was recorded using a GPS and the woody species identified through local knowledge and taxonomic aids. The results showed that the overall integrated altitudinal gradient for the three transects was approximately 100 m. A total of 43 species of trees and shrubs were identified. The Shannon index showed that Transect 2 had the highest diversity of woody species followed by Transect 1 and Transect 3 while the Sorensen’s index indicated qualitative dissimilarity between all the transects. The results of regression analysis indicated that woody species richness increased linearly with elevation in only one transect but regression analysis of height of woody plants and altitude indicated that only about 20% of the variation in the height of woody plants was accountable by altitude. The spatial analysis of woody species-richness and altitudinal gradient showed a dual peak pattern with the main richness peak in low lying areas below 700 m which was mainly within or close to the riparian floodplain environment of the Turkwell River. A minor richness peak was also identified in higher lying areas around the Lokapel hills. The species richness pattern was similar to the hump-shaped altitudinal species-richness pattern which has been recorded widely around the world but mainly in large-scale studies.  相似文献   

18.
The structure of woody vegetation was studied in little disturbed arid savanna and in adjacent over-grazed vegetation. In the over-grazed areas density and cover of woody plants were higher than in the less disturbed vegetation. The difference was accounted for by one species, Acacia mellifera, which was strongly dominant in the overgrazed vegetation. In the open savanna, the woody species varied in height from small shrubs to trees, while the dense shrub vegetation was of uniformly low stature.It is suggested that, while the differences in total abundance of woody species depend on differences in the amount of soil water available for woody growth, differences in species composition and height distribution are governed by the spatial and temporal distribution of water in the soil profile.  相似文献   

19.
The destruction and fragmentation of tropical forests are major sources of global biodiversity loss. A better understanding of anthropogenically altered landscapes and their relationships with species diversity and composition is needed in order to protect biodiversity in these environments. The spatial patterns of a landscape may control the ecological processes that shape species diversity and composition. However, there is little information about how plant diversity varies with the spatial configuration of forest patches especially in fragmented tropical habitats. The northeastern part of Puerto Rico provides the opportunity to study the relationships between species richness and composition of woody plants (shrubs and trees) and spatial variables [i.e., patch area and shape, patch isolation, connectivity, and distance to the Luquillo Experimental Forest (LEF)] in tropical forest patches that have regenerated from pasturelands. The spatial data were obtained from aerial color photographs from year 2000. Each photo interpretation was digitized into a GIS package, and 12 forest patches (24–34 years old) were selected within a study area of 28 km2. The woody plant species composition of the patches was determined by a systematic floristic survey. The species diversity (Shannon index) and species richness of woody plants correlated positively with the area and the shape of the forest patch. Larger patches, and patches with more habitat edge or convolution, provided conditions for a higher diversity of woody plants. Moreover, the distance of the forest patches to the LEF, which is a source of propagules, correlated negatively with species richness. Plant species composition was also related to patch size and shape and distance to the LEF. These results indicate that there is a link between landscape structure and species diversity and composition and that patches that have similar area, shape, and distance to the LEF provide similar conditions for the existence of a particular plant community. In addition, forest patches that were closer together had more similarity in woody plant species composition than patches that were farther apart, suggesting that seed dispersal for some species is limited at the scale of 10 km.  相似文献   

20.
Natural vegetation on the south-eastern coast of Peninsular India has now been reduced to patches, some of which are preserved as sacred groves. The plant biodiversity and population structure of woody plants (>20 cm girth at breast height; gbh) in two such groves, Oorani and Olagapuram, occurring on the north-west of Pondicherry have been analyzed. A total of 169 angiosperms have been enumerated from both sites. The Oorani grove (3.2 ha) had 74 flowering plant species distributed in 71 genera and 41 families; 30 of them are woody species, 8 are lianas and 4 are parasites. The Olagapuram grove (2.8 ha) was more species-rich with 136 species in 121 genera of 58 families; woody species were fewer (21) while 9 lianas and 3 parasites occurred. The vegetation structure indicates that the Oorani grove is a relic of tropical dry evergreen forest, whereas Olagapuram is reduced to a thorny woodland. The latter is heavily degraded as it has lost the status of a sacred grove because of its conversion to Eucalyptus plantations. The Oorani grove has an Amman temple in the centre. The attendant cultural rites and religious rituals have perpetuated the status of a sacred grove which has ensured the protection of the grove.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号