首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Platelets have previously been shown to contain a membrane skeleton that is composed of actin filaments, actin-binding protein, and three membrane glycoproteins (GP), GP Ib, GP Ia, and a minor glycoprotein of Mr = 250,000. The present study was designed to determine how the membrane glycoproteins were linked to actin filaments. Unstimulated platelets were lysed with Triton X-100, and the membrane skeleton was isolated on sucrose density gradients or by high-speed centrifugation. The association of the membrane glycoproteins with the actin filaments was disrupted when actin-binding protein was hydrolyzed by activity of the Ca2+-dependent protease, which was active in platelet lysates upon addition of Ca2+ in the absence of leupeptin. Similarly, activation of the Ca2+-dependent protease in intact platelets by the addition of a platelet agonist also caused the membrane glycoproteins to dissociate from the membrane skeleton. Affinity-purified actin-binding protein antibodies immunoprecipitated the membrane glycoproteins from platelet lysates in which actin filaments had been removed by DNase I-induced depolymerization and high-speed centrifugation. These results demonstrate that actin-binding protein links actin filaments of the platelet membrane skeleton to three plasma membrane glycoproteins and that filaments are released from their attachment site when actin-binding protein is hydrolyzed by the Ca2+-dependent protease within intact platelets during platelet activation.  相似文献   

2.
One of the responses of platelets to stimulation is activation of intracellular calpain (the Ca(2+)-dependent protease). Previously, we have shown that activation of calpain in platelets is involved in the generation of platelet procoagulant activity. Because procoagulant activity is present on the microvesicles that are shed from activated platelets, in this study we examined whether calpain is involved in the shedding of microvesicles. Platelets were incubated with the physiological agonists collagen or thrombin. The extent of activation of calpain correlated positively with the amount of procoagulant-containing microvesicles that formed, and the shedding of procoagulant-containing microvesicles was inhibited by calpeptin, MDL, and EST (E-64-d), three membrane-penetrating inhibitors of calpain. The protein composition of the microvesicles shed from aggregating platelets was similar to that of microvesicles shed by platelets in which the association of the membrane skeleton with the plasma membrane had been disrupted by incubation of platelets with dibucaine or ionophore A23187. Furthermore, like microvesicles shed from dibucaine- or ionophore A23187-treated platelets, those shed from the aggregating platelets possessed procoagulant activity. These results are consistent with the possibility that activation of calpain in aggregating platelets causes the shedding of procoagulant-containing microvesicles. We suggest that the shedding of microvesicles results from the calpain-induced hydrolysis of the platelet membrane skeleton.  相似文献   

3.
Complex animals use a wide variety of adaptor proteins to produce specialized sites of interaction between actin and membranes. Plants do not have these protein families, yet actin-membrane interactions within plant cells are critical for the positioning of subcellular compartments, for coordinating intercellular communication, and for membrane deformation [1]. Novel factors are therefore likely to provide interfaces at actin-membrane contacts in plants, but their identity has remained obscure. Here we identify the plant-specific Networked (NET) superfamily of actin-binding proteins, members of which localize to the actin cytoskeleton and specify different membrane compartments. The founding member of the NET superfamily, NET1A, is anchored at the plasma membrane and predominates at cell junctions, the plasmodesmata. NET1A binds directly to actin filaments via a novel actin-binding domain that defines?a superfamily of thirteen Arabidopsis proteins divided into four distinct phylogenetic clades. Members of other clades identify interactions at the tonoplast, nuclear membrane, and pollen tube plasma membrane, emphasizing the role of this superfamily in mediating actin-membrane interactions.  相似文献   

4.
The interaction of platelet membrane glycoprotein (GP) Ib-IX complex with the cytoplasmic membrane skeleton is potentially of major importance in regulating platelet function. Indirect evidence suggested that this interaction is mediated by actin-binding protein, but it is not known whether GP Ib-IX and actin-binding protein associate directly. To examine more closely the nature of this association, purified GP Ib-IX complex was specifically bound and oriented on the surface of impermeable polymer beads via a monoclonal antibody, AK 2, directed against the extracytoplasmic domain of GP Ib alpha (glycocalicin). Binding was specific since 1) it was abolished by excess unlabeled actin-binding protein; 2) there was no detectable specific binding of radiolabeled actin-binding protein to beads coated with glycocalicin, the major extracytoplasmic proteolytic fragment of GP Ib alpha; and 3) unlike actin-binding protein, there was no specific binding of bovine serum albumin or human platelet vinculin to the GP Ib-IX complex-coated beads. Binding of actin-binding protein to the GP Ib-IX complex-coated beads, but not to the glycocalicin-coated beads, was saturable and reversible (apparent Kd = 1 x 10(-7) M). These experiments provide direct evidence that actin-binding protein can bind to the cytoplasmic domain of a membrane glycoprotein. Because actin-binding protein is found submembranously in cells other than the platelet, it is possible that this protein may link actin filaments to the plasma membrane in those cells.  相似文献   

5.
Identification of a membrane skeleton in platelets   总被引:10,自引:2,他引:8       下载免费PDF全文
Platelets have previously been shown to contain actin filaments that are linked, through actin-binding protein, to the glycoprotein (GP) Ib-IX complex, GP Ia, GP IIa, and an unidentified GP of Mr 250,000 on the plasma membrane. The objective of the present study was to use a morphological approach to examine the distribution of these membrane-bound filaments within platelets. Preliminary experiments showed that the Triton X-100 lysis buffers used previously to solubilize platelets completely disrupt the three-dimensional organization of the cytoskeletons. Conditions were established that minimized these postlysis changes. The cytoskeletons remained as platelet-shaped structures. These structures consisted of a network of long actin filaments and a more amorphous layer that outlined the periphery. When Ca2+ was present, the long actin filaments were lost but the amorphous layer at the periphery remained; conditions were established in which this amorphous layer retained the outline of the platelet from which it originated. Immunocytochemical experiments showed that the GP Ib-IX complex and actin-binding protein were associated with the amorphous layer. Analysis of the amorphous material on SDS-polyacrylamide gels showed that it contained actin, actin-binding protein, and all actin-bound GP Ib-IX. Although actin filaments could not be visualized in thin section, the actin presumably was in a filamentous form because it was solubilized by DNase I and bound phalloidin. These studies show that platelets contain a membrane skeleton and suggest that it is distinct from the network of cytoplasmic actin filaments. This membrane skeleton exists as a submembranous lining that, by analogy to the erythrocyte membrane skeleton, may stabilize the plasma membrane and contribute to determining its shape.  相似文献   

6.
The platelet membrane glycoprotein (GP) Ib-IX complex is a major site of attachment of the platelet membrane skeleton to the plasma membrane. This association is mediated by the interaction of actin-binding protein with the GP Ib-IX complex. The aim of the present work was to identify domains on the GP Ib-IX complex that interact with actin-binding protein. Synthetic peptides corresponding to sequences of the GP Ib alpha-chain and beta-chain cytoplasmic domains were analyzed for their ability to bind to purified actin-binding protein. Two overlapping peptides encompassing a sequence (Thr-536-Phe-568) from the central region of the cytoplasmic domain of GP Ib alpha were the most effective in binding 125I-actin-binding protein, as assessed by a microtiter well approach and peptide affinity chromatography. One of the active peptides (Thr-536-Leu-554) was chosen to evaluate the likelihood that the central region of the cytoplasmic domain of GP Ib alpha is involved in binding of the intact complex to actin-binding protein. This peptide could be specifically cross-linked to purified actin-binding protein in solution. Rabbit polyclonal antibody against this peptide inhibited the binding of purified actin-binding protein to the purified GP Ib-IX complex. Finally, as in intact platelets, the calpain-induced hydrolytic fragments of purified actin-binding protein (M(r) = 200,000 and M(r) = 91,000) showed little binding to the GP Ib alpha peptide. Taken together, these results provided evidence that a region between Thr-536 and Phe-568 of the cytoplasmic domain of GP Ib alpha participates in the interaction of the GP Ib-IX complex with actin-binding protein.  相似文献   

7.
《The Journal of cell biology》1994,126(6):1433-1444
Interactions between the plasma membrane and underlying actin-based cortex have been implicated in membrane organization and stability, the control of cell shape, and various motile processes. To ascertain the function of high affinity actin-membrane associations, we have disrupted by homologous recombination the gene encoding ponticulin, the major high affinity actin-membrane link in Dictyostelium discoideum amoebae. Cells lacking detectable amounts of ponticulin message and protein also are deficient in high affinity actin-membrane binding by several criteria. First, only 10-13% as much endogenous actin cosediments through sucrose and crude plasma membranes from ponticulin- minus cells, as compared with membranes from the parental strain. Second, purified plasma membranes exhibit little or no binding or nucleation of exogenous actin in vitro. Finally, only 10-30% as much endogenous actin partitions with plasma membranes from ponticulin-minus cells after these cells are mechanically unroofed with polylysine- coated coverslips. The loss of the cell's major actin-binding membrane protein appears to be surprisingly benign under laboratory conditions. Ponticulin-minus cells grow normally in axenic culture and pinocytose FITC-dextran at the same rate as do parental cells. The rate of phagocytosis of particles by ponticulin-minus cells in growth media also is unaffected. By contrast, after initiation of development, cells lacking ponticulin aggregate faster than the parental cells. Subsequent morphogenesis proceeds asynchronously, but viable spores can form. These results indicate that ponticulin is not required for cellular translocation, but apparently plays a role in cell patterning during development.  相似文献   

8.
Ponticulin is a 17,000-dalton transmembrane glycoprotein that is involved in the binding and nucleation of actin filaments by Dictyostelium discoideum plasma membranes. The major actin-binding protein isolated from these membranes by F-actin affinity chromatography, ponticulin also binds F-actin on blot overlays. The actin-binding activity of ponticulin in vitro is identical to that observed for purified plasma membranes: it resists extraction with 0.1 N NaOH, is sensitive to high salt concentrations, and is destroyed by heat, proteolysis, and thiol reduction and alkylation. A cytoplasmic domain of ponticulin mediates binding to actin because univalent antibody fragments directed against the cytoplasmic surface of this protein inhibit 96% of the actin-membrane binding in sedimentation assays. Antibody specific for ponticulin removes both ponticulin and the ability to reconstitute actin nucleation activity from detergent extracts of solubilized plasma membranes. Levels of plasma membrane ponticulin increase 2- to 3-fold during aggregation streaming, when cells adhere to each other and are highly motile. Although present throughout the plasma membrane, ponticulin is preferentially localized to some actin-rich membrane structures, including sites of cell-cell adhesion and arched regions of the plasma membrane reminiscent of the early stages of pseudopod formation. Ponticulin also is present but not obviously enriched at phagocytic cups of log-phase amebae. These results indicate that ponticulin may function in vivo to attach and nucleate actin filaments at the cytoplasmic surface of the plasma membrane. A 17,000-dalton analogue of ponticulin has been identified in human polymorphonuclear leukocyte plasma membranes by immunoblotting and immunofluorescence microscopy.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Polyclonal antibodies made against Dictyostelium discoideum membranes were used to block the interaction of those membranes with actin. As expected, actin interacted mostly with the internal surface of the membrane, demonstrated by the fact that whole cells could only absorb out a minor fraction of the blocking antibody. The antibody was used to show that the membrane component(s) which interacted with actin were probably integral; they could be extracted with detergent but not with solutions designed to extract peripheral membrane proteins. To identify the responsible protein(s), Western transfers of membranes were cut into fractions which were tested for their ability to absorb out the blocking activity of the antibody. We observed a single peak at a molecular weight of approximately 20,000, and thus conclude that a 20,000-mol-wt protein is a major integral membrane actin-binding protein in Dictyostelium. This approach to the identification of proteins involved in actin-membrane interaction has allowed us to make the first identification of an actin-binding membrane protein which is based on its activity in native membranes.  相似文献   

10.
It has long been known that the red blood cell contains a membrane skeleton that stabilizes the plasma membrane, determines its shape, and regulates the lateral distribution of the membrane glyco-proteins to which it is attached. The way in which these functions are regulated in other cells has not been understood. It has now been shown that platelets also contain a membrane skeleton. In contrast to the membrane skeleton of the red blood cell, the platelet membrane skeleton has actin-binding protein, not spectrin, as a major component. The platelet membrane skeleton regulates the same cellular functions as the red blood cell membrane skeleton. Other cells may contain a membrane skeleton that is critical to their viability and normal functioning.  相似文献   

11.
Platelets have been shown to possess several, different, low-molecular-mass, guanine-nucleotide-binding proteins (G-proteins) with molecular masses about 20-30 kDa. We report here that a 25-kDa G-protein copurified with the bovine platelet actin-binding protein (ABP), a cross-linker of actin filaments which is known to generate the three-dimensional network of actin. Both the G-protein and ABP were recovered in a fraction that was insoluble in Triton X-100 and were extracted in 0.6 M NaCl. Gel-filtration chromatography of the high-salt extract and rechromatography in a low-salt solution indicated that the two proteins may be associated with each other. The association of the two proteins was suggested by cosedimentation of the G-protein with the actin gel formed by actin and ABP. The amounts of the cosedimented G-protein and ABP was unaffected by guanosine-5'-O-[beta-thio]diphosphate and guanosine-5'-O-[gamma-thio]triphosphate, but the G-protein, not ABP, was partially released from the actin gel by phosphorylating ABP with cAMP-dependent protein kinase. Thus, the association of the two proteins was affected by modification of ABP, but not by modification of G-proteins. The physiological significance of the possible association of the two proteins might be that the membrane skeleton functions as a modulator of the G-protein, rather than that the G-protein modulates the function of the membrane skeleton which comprises ABP.  相似文献   

12.
The effects of pH, temperature, block of energy production, calcium/calmodulin, protein phosphorylation, and cytoskeleton-disrupting agents (cytochalasin D, nocodazole) on the integrity of the membrane skeleton were studied in polarized MDCK cells. The intracellular distributions of α-fodrin, actin, and ankyrin were monitored by immunofluorescence microscopy. The membrane skeleton, once assembled, seemed to be quite stable; the only factors releasing α-fodrin from the lateral walls were the acidification of the cytoplasm and the depletion of extracellular calcium ions. Upon cellular acidification, some actin was also released from its normal location along the lateral walls and was seen in colocalization with α-fodrin in the cytoplasm, whereas ankyrin remained associated with the lateral walls. No accumulation of plasma membrane lipids was observed in the cytoplasm of acidified cells, as visualized by TMA-DPH. These results suggest that the linkages between the fodrin-actin complex and its membrane association sites are broken upon acidification. The pH-induced change in α-fodrin localization was reversible upon restoring the normal pH. Reassembly of the membrane skeleton, however, required temperatures above +20°C, normal energy production, proper cell-cell contacts, and polymerized actin. Release of α-fodrin from the lateral walls to the cytoplasm was also observed upon depletion of extracellular calcium ions. This change was accompanied by the disruption of cell-cell contacts, supporting the role of proper cell-cell contacts in the maintenance of the membrane skeleton polarity. These results suggest that local alterations of the cytoplasmic pH and calcium ion concentration may be important in regulating the integrity of the membrane skeleton. © 1996 Wiley-Liss, Inc.  相似文献   

13.
F-actin affinity chromatography and immunological techniques are used to identify actin-binding proteins in purified Dictyostelium discoideum plasma membranes. A 17-kD integral glycoprotein (gp17) consistently elutes from F-actin columns as the major actin-binding protein under a variety of experimental conditions. The actin-binding activity of gp17 is identical to that of intact plasma membranes: it resists extraction with 0.1 N NaOH, 1 mM dithiothreitol (DTT); it is sensitive to ionic conditions; it is stable over a wide range of pH; and it is eliminated by proteolysis, denaturation with heat, or treatment with DTT and N-ethylmaleimide. gp17 may be responsible for much of the actin-binding activity of plasma membranes since monovalent antibody fragments (Fab) directed primarily against gp17 inhibit actin-membrane binding by 96% in sedimentation assays. In contrast, Fab directed against cell surface determinants inhibit binding by only 0-10%. The actin-binding site of gp17 appears to be located on the cytoplasmic surface of the membrane since Fab against this protein continue to inhibit 96% of actin-membrane binding even after extensive adsorption against cell surfaces. gp17 is abundant in the plasma membrane, constituting 0.4-1.0% of the total membrane protein. A transmembrane orientation of gp17 is suggested since, in addition to the cytoplasmic localization of the actin-binding site, extracellular determinants of gp17 are identified. gp17 is surface-labeled by sulfo-N-hydroxy-succinimido-biotin, a reagent that cannot penetrate the cell membrane. Also, gp17 is glycosylated since it is specifically bound by the lectin, concanavalin A. We propose that gp17 is a major actin-binding protein that is important for connecting the plasma membrane to the underlying microfilament network. Therefore, we have named this protein "ponticulin" from the Latin word, ponticulus, which means small bridge.  相似文献   

14.
Plasma membrane association of Acanthamoeba myosin I   总被引:19,自引:15,他引:4       下载免费PDF全文
《The Journal of cell biology》1989,109(4):1519-1528
Myosin I accounted for approximately 2% of the protein of highly purified plasma membranes, which represents about a tenfold enrichment over its concentration in the total cell homogenate. This localization is consistent with immunofluorescence analysis of cells that shows myosin I at or near the plasma membrane as well as diffusely distributed in the cytoplasm with no apparent association with cytoplasmic organelles or vesicles identifiable at the level of light microscopy. Myosin II was not detected in the purified plasma membrane fraction. Although actin was present in about a tenfold molar excess relative to myosin I, several lines of evidence suggest that the principal linkage of myosin I with the plasma membrane is not through F- actin: (a) KI extracted much more actin than myosin I from the plasma membrane fraction; (b) higher ionic strength was required to solubilize the membrane-bound myosin I than to dissociate a complex of purified myosin I and F-actin; and (c) added purified myosin I bound to KI- extracted plasma membranes in a saturable manner with maximum binding four- to fivefold greater than the actin content and with much greater affinity than for pure F-actin (apparent KD of 30-50 nM vs. 10-40 microM in 0.1 M KCl plus 2 mM MgATP). Thus, neither the MgATP-sensitive actin-binding site in the NH2-terminal end of the myosin I heavy chain nor the MgATP-insensitive actin-binding site in the COOH-terminal end of the heavy chain appeared to be the principal mechanism of binding of myosin I to plasma membranes through F-actin. Furthermore, the MgATP- sensitive actin-binding site of membrane-bound myosin I was still available to bind added F-actin. However, the MgATP-insensitive actin- binding site appeared to be unable to bind added F-actin, suggesting that the membrane-binding site is near enough to this site to block sterically its interaction with actin.  相似文献   

15.
MARCKS and profilin, two actin-binding proteins, are discussed to illustrate the mechanism by which extracellular signals are coupled to changes in the structure of the actin cytoskeleton. MARCKS is a filamentous actin-crosslinking protein that appears to function as an integrator of protein kinase C and calcium (Ca2+)/calmodulin signals in the regulation of actin-membrane interactions. New data suggest that profilin is activated by the coordinated action of receptor tyrosine kinases and phospholipase C-gamma 1 to stimulate the stabilization of actin filaments.  相似文献   

16.
Intra-erythrocytic Plasmodium falciparum malaria parasites synthesize and export numerous proteins into the red blood cell (RBC) cytosol, where some bind to the RBC membrane skeleton. These interactions are responsible for the altered antigenic, morphological and functional properties of parasite-infected red blood cells (IRBCs). Plasmodium falciparum protein 332 (Pf332) is a large parasite protein that associates with the membrane skeleton and who's function has recently been elucidated. Using recombinant fragments of Pf332 in in vitro interaction assays, we have localised the specific domain within Pf332 that binds to the RBC membrane skeleton to an 86 residue sequence proximal to the C-terminus of Pf332. We have shown that this region partakes in a specific and saturable interaction with actin (Kd = 0.60 µM) but has no detectable affinity for spectrin. The only exported malaria protein previously known to bind to actin is PfEMP3 but here we demonstrate that there is no competition for actin-binding between PfEMP3 and Pf332, suggesting that they bind to different target sequences in actin.  相似文献   

17.
The Triton X-100-insoluble skeleton of baby hamster kidney BHK cells consists of the nucleus, intermediate-size filaments, and actin fibers. By transmission electron microscopy, membrane fragments were found to be associated with these insoluble structures. When radioiodinated or [3H]glucosamine-labeled cells were extracted with 0.5% Triton, most plasma membrane glycoproteins were solubilized except for a glycoprotein with a molecular weight of 85,000 (gp85) that remained associated with the insoluble skeletons. Immunoprecipitation with a specific antiserum indicated that the gp85 is not a proteolytic degradation product of fibronectin, an extracellular matrix glycoprotein insoluble in detergent. A monoclonal antibody of BHK cells specific for gp85 was produced. Immunofluorescence analysis with this monoclonal antibody indicated that gp85 is not associated with the extracellular matrix, but is confined to the cell membrane. Both in fixed and unfixed intact cells, fluorescence was concentrated in dots preferentially aligned in streaks on the cell surface. Gp85 was found to behave as an integral membrane protein interacting with the hydrophobic core of the lipid bilayer since it was extracted from membrane preparations by ionic detergents such as SDS, but not by 0.1 N NaOH (pH 12) in the absence of detergents, a condition known to release peripheral molecules. Association of gp85 with the cell skeleton was unaffected by increasing the Triton concentration up to 5%, but it was affected when actin filaments were dissociated or when a protein-denaturing agent (6 M urea) was used in the presence of Triton, suggesting that protein-protein interactions are involved in the association of gp85 with the cell skeleton. We conclude that gp85 is an integral plasma membrane glycoprotein that might have a role in cell surface-cytoskeleton interaction.  相似文献   

18.
Effect of plasma membranes of murine fibroblasts cultivated in suspension on actin polymerization was studied. Using low shear viscometry of actin-membrane mixtures together with the number of extractions of membranes with actin depolymerizing buffers it was found that at least two polypeptides 220 and 94 kDa may be involved into the actin filaments-plasma membrane interaction.  相似文献   

19.
Evidence of direct interaction between actin and membrane lipids   总被引:3,自引:0,他引:3  
Actin is a protein component of the cystoskeleton and is involved in cell motility. It is believed generally that actin filaments are attached to the cell membrane through an interaction with membranous actin-binding proteins. By using an in vitro system composed of liposomes and actin, we have shown that actin may also interact directly with the phospholipids of the membrane. Actin deposited at the surface of the liposome is organized in two regular patterns: a paracrystalline sheet of parallel filaments in register, or a netlike organization. These interactions of actin with membrane lipids occur only in the presence of millimolar concentrations of Mg2+. These results suggest that the interaction of the cytoskeleton with the membrane involves, at least in part, a direct association of actin with phospholipids.  相似文献   

20.
We examined the association between glycoprotein (GP) IIb/IIIa, a receptor for fibrinogen, and membrane skeletons in both unstimulated and thrombin-activated human platelets. After a treatment with dithiobis succinimidyl propionate (DTSP), a cross-linker, unstimulated and activated platelets were simultaneously extracted and fixed with a fixing solution containing Triton X-100. Also, the localization of GPIIb/IIIa on the plasma membrane was observed by a preembedding staining method of unextracted platelets. In unstimulated platelets, 20-40% of the whole plasma membrane remained in the detergent-extracted samples. Amorphous structures with 10-70 nm in diameters are distributed at 20 to 100-nm intervals on the surface of plasma membrane. Similar structures also were identified in the intact platelets by the immunocytochemical method. By careful inspection, we found that most of the amorphous structures that contained gold particles were connected to the submembrane zone just beneath the plasma membrane. The submembrane zone was identified as the membrane skeleton because actin was detected in the zone. After activation, detergent-insoluble granules were surrounded by dense networks of microfilaments in the central part of platelets. The filaments were identified as actin and became associated with myosin. These results demonstrate that GPIIb/IIIa on the plasma membrane is connected to the membrane skeleton and suggest that, during activation, actin filaments which extend into the cytoplasm from the membrane skeleton increase and form dense networks around Triton-insoluble granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号