首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vascular resistance in the mammalian pulmonary circulation is affected by many endogenous agents that influence vascular smooth muscle, right ventricular myocardium, endothelial function, collagen and elastin deposition, and fluid balance. When the balance of these agents is disturbed, e.g. by airway hypoxia from high altitude or pulmonary obstructive disorders, pulmonary hypertension ensues, as characterized by elevated pulmonary artery pressure (P(PA)). Among neuropeptides with local pulmonary artery pressor effects are endothelin-1 (ET-1), angiotensin II (AII), and substance P, and among mitigating peptides are calcitonin gene-related peptide (CGRP), adrenomedullin (ADM), atrial natriuretic peptide (ANP), vasoactive intestinal peptide (VIP) and ET-3. Moreover, somatostatin28 (SOM28) exacerbates, whereas SOM14 decreases P(PA) in hypoxic rats, with lowering and increasing of lung CGRP levels, respectively. Pressure can also be modulated by increasing or decreasing plasma volume (VIP and ANP, respectively), or by induction or suppression of vascular tissue remodeling (ET-1 and CGRP, respectively). Peptide bioavailability and potency can be regulated through hypoxic up- and down- regulation of synthesis or release, activation by converting enzymes (ACE for AII and ECE for ET-1), inactivation by neutral endopeptidase and proteases, or by interaction with nitric oxide (NO). Moreover, altered receptor density and affinity can account for changed peptide efficacy. For example, upregulation of ET(A) receptors and ET-1 synthesis occurs in the hypoxic lung concomitantly with reduced CGRP release. Also, receptor activity modifying protein 2 (RAMP2) has been shown to confer ADM affinity to the pulmonary calcitonin-receptor-like receptor (CRLR). We recently detected the mRNA encoding for RAMP2, CRLR, and the CGRP receptor RDC-1 in rat lung. The search for an effective, lung selective treatment of pulmonary hypertension will likely benefit from exploring the imbalance and restoring the balance between these native modulators of intrapulmonary pressure. For example, blocking of the ET-1 receptor ET(A) and vasodilation by supplemental CGRP delivered i. v. or via airway gene transfer, have proven to be useful experimentally.  相似文献   

2.
The post-prandial release of glucagon-like peptide-1 (GLP-1) from the distal gut appears to involve a neural reflex that arises from the proximal gut. The neuropeptide calcitonin gene-related peptide (CGRP)'s potent stimulatory effect on GLP-1 release was characterized, using the isolated vascularly perfused rat ileum. CGRP, but not its homolog amylin, induced a dose-dependent and sustained release of GLP-1. This effect was greatly reduced in the presence of CGRP(8-37), was abolished by galanin, potentiated by luminal glucose and unaffected by atropine. GIP enhanced, but did not potentiate, this effect. The results reveal how CGRP is involved in the complex regulation of GLP-1 release.  相似文献   

3.
The peptides amylin and calcitonin-gene related peptide (CGRP) have been shown to have similar effects on glycogen metabolism in vivo and in vitro. However, it is not clear whether they act via separate receptors. Peptide fragments based on the amino acid sequence of amylin or CGRP were evaluated for their ability to inhibit the action of the peptides in vitro. Insulin-stimulated glycogen turnover, as measured by 14C-glycogen accumulation, was inhibited about 70% by amylin (10nM) and 85% by CGRP (10nM). In the absence of exogenous peptide, peptide fragments based on the 8-37 and 10-37 amino acid sequences of rat amylin (10 uM) had no affect on 14C-glycogen accumulation. In the presence of amylin (10nM), the 8-37 and 10-37 fragments blocked amylin-induced inhibition of 14C-glycogen accumulation 100% and 11.4%, respectively. The 8-37 and 10-37 amylin fragments blocked CGRP inhibition of 14C-glycogen accumulation by 23.2% or 28.6%, respectively. The CGRP 8-37 fragment was equally effective as the amylin 8-37 reversing the effects of amylin than at reversing the effects of CGRP. These results demonstrate that amylin (8-37) completely antagonizes the effects of amylin with limited ability to block CGRP. Removing the eighth and ninth amino acids reduced the effectiveness of the inhibitor by about 90%.  相似文献   

4.
The peptide amylin (previously termed Diabetes Associated Peptide) has recently been isolated and characterised from the amyloid of the pancreatic islets of Langerhans from human type 2 diabetics [1]. Amylin shows about 46% identity in amino acid sequence on comparison with the calcitonin gene-related peptides (CGRPs) and also shows some similarity to insulin [1]. Recent studies have also shown that both amylin and CGRP are potent inhibitors of insulin-stimulated glycogen synthesis in skeletal muscle in vitro [2,3]. Hormones may be arranged into families, therefore a degree of order exists even though hormone-mediated effects are complex [4]. The polypeptides insulin, insulin-like growth factors (IGFs) and relaxins have been grouped into such a family with similarities both at the protein-structural and genetic levels [4,5]. We now demonstrate that this insulin-related family, along with amylin and the CGRPs, are members of a peptide superfamily defined by structural similarity in the region corresponding to the A-chain of insulin. In order to distinguish this grouping of small biologically active peptides from the previous one, we have designated it the amylin superfamily. All the members of the previously defined insulin family have a region homologous to the insulin B-chain. Insulin, the IGFs, the relaxins, the CGRPs and amylin are all involved in carbohydrate metabolism and therefore these peptides are functionally as well as structurally related. This grouping of peptides may have important implications for the study of human metabolic disease.  相似文献   

5.
6.
肺内调节肽对兔支气管上皮细胞分泌白介素的影响   总被引:10,自引:3,他引:7  
Tan YR  Qin XQ  Guan CX  Zhang CQ  Xiang Y  Ren YH 《生理学报》2002,54(2):107-110
为探讨肺内调节肽对气管上皮细胞(brochial epithelial cells,BECs)分泌功能的影响,实验观察了兔BECs在未受应激与臭氧应激两种条件下白细胞介素(interleukin,ILs)的分泌。结果发现:血管活性肠肽(vasoac-tive intestinal peptide,VIP)以未受应激BECs存在抑制作用,并使用臭氧应激BECs分泌ILs下降;表皮生长因子(epi-dermal growth factor,EGF)使未受应激BECs IL-1、IL-8分泌增加,使臭氧应激的BECs ILs分泌降低;内皮素-1(endothelin-1,ET-1)、降钙素基因相关肽(calctionin gene-related peptide,CGRP)可使未受应激的BECs分泌ILs增加,CGRP还可使臭氧应激的BECs ILs分泌增加。结果提示:肺内调节肽可调控BECs ILs的分泌,在调控气道炎症损伤信号传递方面具有一定的作用。  相似文献   

7.
Lung endocrine-like cells are believed to contain three immunohistochemically distinct peptides: bombesin, calcitonin, and Leu-enkephalin. Because these peptides exhibit smooth muscle stimulatory or inhibitory activity in some tissues, it has been suggested that their release from endocrine-like cells may influence airway or pulmonary vascular smooth muscle tone. To determine whether lung endocrine cell-related peptides could exert a regulatory influence in the pulmonary circulation, we evaluated their ability to constrict or dilate the vasculature of isolated perfused rat lungs. Neither bombesin nor calcitonin exhibited any pulmonary vascular effects. However, Leu-enkephalin provoked dose-dependent pulmonary vasoconstriction. These results suggest that Leu-enkephalin released from lung endocrine-like cells could be involved with regulation of pulmonary vascular tone.  相似文献   

8.
《Life sciences》1994,56(3):PL63-PL66
Responses to synthetic human adrenomedullin (ADM), a novel hypotensive peptide initially isolated from human pheochromocytoma cells, an ADM analog (ADM15–52), and a structurally related peptide, calcitonin gene-related peptide (CGRP), were compared in the pulmonary vascular bed of the cat and rat under constant flow conditions. When tone was increased with U46619, intraarterial injections of ADM (0.03–0.3 nmol), ADM15–52 (0.03–0.3 nmol), and of CGRP (0.03–0.3 nmol) caused dose-related decreases in pulmonary arterial perfusion pressure. When the relative vasodilator activity of the peptides was compared on a nmol basis, ADM was approximately 10-fold more potent in the cat than in the rat, whereas vasodilator responses to CGRP were very similar in both species. CGRP was slightly more potent than ADM in the rat, whereas ADM was slightly more potent than CGRP in the cat. ADM and ADM15–52 had similar pulmonary vasodiltor activity in the cat, whereas the full sequence peptide was slightly more potent than ADM15–52 in the rat. The present data demonstrate that ADM has significant vasodilator activity in the pulmonary vascular beds of the cat and of the rat, and that the relative potency of the vasodilator effects of ADM and ADM15–52 are different in the two species.  相似文献   

9.
Dumont Y  Chabot JG  Quirion R 《Peptides》2004,25(3):365-391
Over the past 20 years, receptor autoradiography has proven most useful to provide clues as to the role of various families of peptides expressed in the brain. Early on, we used this method to investigate the possible roles of various brain peptides. Natriuretic peptide (NP), neuropeptide Y (NPY) and calcitonin (CT) peptide families are widely distributed in the peripheral and central nervous system and induced multiple biological effects by activating plasma membrane receptor proteins. The NP family includes atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP). The NPY family is composed of at least three peptides NPY, peptide YY (PYY) and the pancreatic polypeptides (PPs). The CT family includes CT, calcitonin gene-related peptide (CGRP), amylin (AMY), adrenomedullin (AM) and two newly isolated peptides, intermedin and calcitonin receptor-stimulating peptide (CRSP). Using quantitative receptor autoradiography as well as selective agonists and antagonists for each peptide family, in vivo and in vitro assays revealed complex pharmacological responses and radioligand binding profile. The existence of heterogeneous populations of NP, NPY and CT/CGRP receptors has been confirmed by cloning. Three NP receptors have been cloned. One is a single-transmembrane clearance receptor (NPR-C) while the other two known as CG-A (or NPR-A) and CG-B (or NPR-B) are coupled to guanylate cyclase. Five NPY receptors have been cloned designated as Y(1), Y(2), Y(4), Y(5) and y(6). All NPY receptors belong to the seven-transmembrane G-protein coupled receptors family (GPCRs; subfamily type I). CGRP, AMY and AM receptors are complexes which include a GPCR (the CT receptor or CTR and calcitonin receptor-like receptor or CRLR) and a single-transmembrane domain protein known as receptor-activity-modifying-proteins (RAMPs) as well as an intracellular protein named receptor-component-protein (RCP). We review here tools that are currently available in order to target each NP, NPY and CT/CGRP receptor subtype and establish their respective pathophysiological relevance.  相似文献   

10.
We recently reported the direct inhibitory effect of adrenomedullin on caecal circular smooth muscle cells via cAMP system. This study was designed to determine whether the structurally related peptides to adrenomedullin (i.e.; calcitonin gene-related peptide (CGRP), calcitonin, and amylin) can inhibit the cholecystokinin octapeptide (CCK-8)-induced contractile response by exerting a direct action on guinea-pig caecal circular smooth muscle cells, and to compare the inhibitory potency of these peptides. In addition, to elucidate each intracellular mechanisms, the effects of an inhibitor of cAMP-dependent protein kinase, inhibitors of particulate or soluble guanylate cyclase on the each peptide-induced relaxation were investigated. Adrenomedullin, CGRP, calcitonin, and amylin inhibited the contractile response produced by CCK-8 in a dose-dependent manner, with IC50 values of 0.14 nM, 0.37 nM, 5.4 nM, and 160 nM, respectively. An inhibitor of cAMP-dependent protein kinase significantly inhibited the relaxation produced by all of these peptides. On the contrary, inhibitors of particulate or soluble guanylate cyclase did not have any significant effect on the relaxation produced by these peptides. In this study, we demonstrated the direct inhibitory effects of the structurally related peptides to adrenomedullin (i.e.; CGRP, calcitonin, and amylin) on the isolated caecal circular smooth muscle cells via cAMP system. The order of potency was as follows; adrenomedullin falling dots CGRP > calcitonin > amylin.  相似文献   

11.
Intermedin/adrenomedullin-2 (IMD/AM2) is a 47 amino acid peptide formed by enzymatic degradation of preprointermedin. The present study was undertaken to investigate the effects of rat IMD (rIMD) in the isolated buffer perfused rat lung (IBPR) under resting conditions and under conditions of elevated pulmonary vasoconstrictor tone (PVT). Under resting conditions in the IBPR, rIMD had little or no activity. When PVT was actively increased by infusion of U46619, bolus injection of IMD decreased pulmonary arterial pressure (PAP) in a dose-dependent manner. Since the pulmonary perfusion rate and left atrial pressure were constant, these reductions in PAP directly reflect reductions in pulmonary vascular resistance (PVR). The pulmonary vasodilator response to rIMD, when compared to calcitonin gene-related peptide (CGRP) on a molar basis, was greater at the lowest and midrange doses. The degree of inhibition by CGRP8-37 on pulmonary vasodilator response to rIMD was significantly less when compared to CGRP. Pretreatment with L-nitro-arginine-methyl ester (L-NAME), unlike meclofenamate and glybenclamide, significantly reduced the pulmonary vasodilator responses to rIMD. rIMD administration induced cross-tachyphylaxis to the pulmonary vasodilator response to CGRP whereas CGRP administration did not alter the ability of rIMD to dilate the IBPR. Pulmonary vasodilator responses to repeated injections of rIMD did not undergo tachyphylaxis. The present data demonstrate rIMD possesses direct vasodilator activity in the rat pulmonary vascular bed. The present data suggest activation of CGRP1 receptors and release of nitric oxide (NO*) mediate the pulmonary vasodilator response to rIMD whereas cyclooxygenase products and KATP channels do not contribute to the pulmonary vasodilator response to rIMD. The ability of rIMD to induce heterologous desensitization of CGRP1 receptor activation, to retain much of its pulmonary vasodilator activity after inhibition of CGRP1 receptors, and to lack homologous desensitization together suggests the pulmonary, unlike the systemic, vasodilator response to rIMD may depend on other vasodilator mechanisms including receptors in the calcitonin-receptor-like-receptor (CRLR) family.  相似文献   

12.
Pulmonary vasodilator responses to vasoactive intestinal peptide in the cat   总被引:1,自引:0,他引:1  
We investigated the effects of vasoactive intestinal peptide (VIP) in the feline pulmonary vascular bed under conditions of controlled pulmonary blood flow when pulmonary vascular tone was at base-line levels and when vascular resistance was elevated. Under base-line conditions, VIP caused small but significant reductions in lobar arterial pressure without affecting left atrial pressure. Decreases in lobar arterial pressure in response to VIP were greater and were dose related when lobar vascular resistance was increased by intralobar infusion of U 46619, a stable prostaglandin endoperoxide analogue. Acetylcholine and isoproterenol also caused significant decreases in lobar arterial pressure under base-line conditions, and responses to these agents were enhanced when lobar vascular tone was elevated. Moreover, when doses of these agents are expressed in nanomoles, acetylcholine and isoproterenol were more potent than VIP in decreasing lobar arterial pressure. Responses to VIP were longer in duration with a slower onset than were responses to acetylcholine or isoproterenol. Pulmonary vasodilator responses to VIP were unchanged by indomethacin, atropine, or propranolol. The present data demonstrate that VIP has vasodilator activity in the pulmonary vascular bed and that responses are dependent on the existing level of vasoconstrictor tone. These studies indicate that this peptide is less potent than acetylcholine or isoproterenol in dilating the feline pulmonary vascular bed and that responses to VIP are not dependent on a muscarinic or beta-adrenergic mechanism or release of a dilator prostaglandin.  相似文献   

13.
The effects of glucagon-like peptide 1 (7-36) amide [GLP-1 (7-36) amide] and glucagon on the release of islet amyloid polypeptide (IAPP), or amylin, from the isolated perfused rat pancreas were studied. In the presence of 5.6 mM glucose, GLP-1 (7-36) amide and glucagon stimulated the release of amylin from the perfused pancreas. The infusion of GLP-1 (7-36) amide at a concentration of 10(-9) M elicited a biphasic release of amylin similar to that of insulin. The cumulative output of amylin induced by 10(-9)M GLP-1 (7-36) amide was significantly higher than that by 10(-9)M glucagon (p less than 0.01). The amylin/insulin molar ratios induced by GLP-1 (7-36) amide and glucagon were about 1% and did not differ significantly. These findings suggest that GLP-1 (7-36) amide and glucagon stimulate the release of amylin from the pancreas and that the concomitant secretion of amylin and insulin might contribute to glucose homeostasis.  相似文献   

14.
Adrenomedullin (ADM) is a recently discovered vasoactive peptide that has potent vasodilator activity in the pulmonary and peripheral vascular beds and has significant effects on endocrine function. ADM is a member of the CGRP/amylin superfamily of peptides based largely on the presence of the six-membered ring structure and C-terminal amidation that is highly conserved in this family. Proadrenomedullin is a 185 amino acid precursor with enzymatic cleavage sites for both ADM and a unique 20 amino acid peptide named proadrenomedullin N-terminal 20 peptide (PAMP). ADM and PAMP are found in a variety of organ systems, and plasma levels of the peptides are increased in pathophysiologic conditions. Both peptides have hypotensive and vasodilator activity in the pulmonary and regional vascular beds and have significant effects on the endocrine system, including the adrenal gland. ADM (15-52), which retains the six-membered ring structure, maintains the vasodilator activity of ADM, suggesting that the 14 amino acid N-terminal extension is not necessary for the full agonist activity. However, analogs, such as ADM-(22-52) and ADM-(40-52), which do not contain the six-member ring structure, lack agonist activity. Unlike the full-sequence peptide, hADM-(15-22) and ADM-(16-21), which contain the ring structure, increase systemic arterial pressure in the rat but not in the cat. The present review discusses the structure-activity relationship for the actions of ADM and related peptides and discusses the mechanisms which mediate responses to these widely distributed peptides.  相似文献   

15.
Ren YH  Qin XQ  Guan CX  Luo ZQ  Zhang CQ  Sun XH 《生理学报》2004,56(2):137-146
为探讨内源性神经肽在气道高反应性形成中的作用,我们以臭氧应激损伤动物气道上皮细胞,建立气道高反应性动物模型,并观察臭氧应激不同时间肺内血管活性肠肽(vasoactive intestinal peptide,VIP)、降钙素基因相关肽(calcitonin gene-related CGRP)含量变化以及VIP受体(VIPR1)、CGRP受体(GRPR1)mRNA在肺内表达、分布的改变。实验观察到,臭氧应激组动物吸入乙酰甲胆碱后气道阻力高于正常对照组,肺内呈现明显的炎症改变。随臭氧应激时间延长,肺组织匀浆中VIP、CGRP浓度呈先增高后降低的双向改变,CGRP达峰值时间早于VIP。VIPR1、CGRPR1 mRNA表达亦经历了双向过程,VIPR1峰值持续时间长于CGRPR1。在无应激对照组动物,肺间质、支气管上皮细胞、血管内皮细胞、平滑肌细胞均有VIPR1、CGRPR1 mRNA表达。随应激时间的延长,阳性细胞呈斑片状集中于气管、血管周围,染色强度增加,至臭氧应激第8天,阳性染色细胞减少。因此我们推测,臭氧应激可以诱导动物气道高反应性的形成。在炎症的早期,以CGRP的作用为主,与肺损伤早期炎症信号的传递有关,以清除刺激原、及时终止致病原的作用;炎症后期以保护机体、促进修复、减轻损伤为主,VIP发挥主要作用。  相似文献   

16.
Amylin binding sites in a human hepatoblastoma cell line (HepG2) have been characterized in detail. 125I-Amylin (rat) bound to HepG2 cells with high affinity. Binding was reversible and selective, and dependent on time and temperature. Scatchard analysis revealed the presence of high (Kd = 0.11 ± 0.04 nM) and low (Kd = 1.3 ± 0.4 μM) affinity binding sites for 125I-amylin in HepG2 cells. The dissociation experiments also showed that 125I-amylin dissociated from high- and low-affinity sites. The association data, however, indicated the presence of only one binding site. Rat amylin was more potent than human amylin and rat calcitonin gene-related peptide (CGRP) in displacing 125I-amylin bound to HepG2 cells. Nonhomologous peptides did not displace 125I-amylin. Rat amylin was, however, less potent than rat CGRP in displacing 125I[Tyr0]CGRP from HepG2 cells. Pretreatment of HepG2 cells with rat amylin (10 nM) reduced the specific binding of 125I-amylin by 75%, whereas rat CGRP (10 nM) pretreatment had no effect on amylin binding. Calcitonin gene-related peptide, as well as rat and human amylin, stimulated the adenylate cyclase activity of HepG2 cell membrane preparation in a dose-dependent manner, with an order of potency of CGRP > rat amylin > human amylin. A CGRP antagonist, CGRP(8–37), significantly attenuated the stimulatory effect of both amylin and CGRP on adenylate cyclase activity. These investigations show that distinct receptors of amylin and CGRP are present in HepG2 cells and that amylin stimulates adenylate cyclase activity through CGRP receptors. This system could now be exploited for studying amylin receptors and amylin-mediated signal transduction.  相似文献   

17.
Nonadrenergic noncholinergic (NANC) mediated vasodilation may contribute to the maintenance of low pulmonary vascular tone. The NANC neurotransmitters, nitric oxide (NO) and the sensory neuropeptides, substance P and calcitonin gene related peptide (CGRP), were investigated as possible mediators of NANC vasodilation in guinea pig pulmonary arteries. Fresh guinea pig pulmonary artery rings, with and without an intact endothelium, were mounted in organ baths containing Krebs solution and precontracted with the prostaglandin F2alpha analogue U44069. In both endothelium-intact and denuded vessels, electrical field stimulation (1-12 Hz) in the presence of guanethidine and atropine resulted in a frequency-dependent vasodilation. The peptide fragment hCGRP8-37, a competitive antagonist of the CGRP receptors, the peptide fragment NK1 antagonist SP4-11, and the nonpeptide NK1 antagonist RP67580 had no effect on NANC vasodilation. In both endothelium-intact and denuded vessels, N(G)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthesis, inhibited NANC vasodilation, an effect that was reversible with L-arginine. We conclude that NANC vasodilation in guinea pig pulmonary arteries is mediated predominantly through NO activity.  相似文献   

18.
The two peptides calcitonin gene related peptide (CGRP) and amylin at 1 uM levels in an isolated rat diaphragm preparation inhibited insulin stimulated 2-deoxy[3H]glucose transport by 30 and 60 percent, respectively; this was the case at maximal (1 uM) and sub-maximal (0.5 mU) insulin concentrations. No effect was measured on the basal level of 2-deoxy[3H]glucose transport.  相似文献   

19.
Although airway and pulmonary vessel tone are regulated predominantly by cholinergic and adrenergic impulses, biologically active peptides such as calcitonin gene-related peptide (CGRP) may significantly influence human smooth muscle tone in normal and pathophysiological states. In the present study, the expression of CGRP and its receptor CGRPR-1 and the biological effect of the peptide were investigated in human airways and pulmonary arteries. Immunohistochemistry revealed the presence of CGRP in human airway nerves and neuro-epithelial cells, whereas the receptor was found in epithelial cells and smooth muscle myocytes of the bronchi and in pulmonary artery endothelium. On precontracted bronchi (3-4 mm in diameter) alpha-CGRP (0.01-10 nM) caused a concentration-dependent contraction on epithelium-denuded bronchi, whereas no significant effect was recorded in bronchi with intact epithelium. In pulmonary arteries (2-6 mm in diameter), alpha-CGRP caused a concentration-dependent relaxation of endothelium intact and denuded vessels. Pre-treatment with indomethacin, but not with l-NAME, prevented the relaxation induced by alpha-CGRP in pulmonary arteries suggesting that prostaglandins but not nitric oxide (NO) are involved in the intracellular signal transduction pathway. The effects induced by alpha-CGRP in bronchi and vessels were prevented by application of the antagonist CGRP((8-37)). In summary, the present studies examined the biological function of CGRP in human airways and demonstrated a constrictory effect of CGRP only in epithelium-denuded airway smooth muscle indicating an alteration of CGRP airway effects in respiratory tract pathological states with damaged epithelium such as chronic obstructive pulmonary disease or bronchial asthma.  相似文献   

20.
Responses to pituitary adenylate cyclase-activating polypeptide (PACAP), a novel peptide derived from ovine hypothalamus with 68% sequence homology with vasoactive intestinal polypeptide (VIP), were investigated in the pulmonary and hindquarters vascular beds of the anesthetized cat under conditions of controlled blood flow. Injection of the peptide into the perfused lung lobe under elevated tone conditions produced dose-dependent decreases in lobar arterial pressure that were accompanied by biphasic changes in systemic arterial pressure characterized by an initial decrease followed by a secondary increase in pressure. When compared with other vasodilator agents in the pulmonary vascular bed, the relative order of potency was isoproterenol greater than PACAP greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP. In the hindquarters vascular bed, intra-arterial injections of PACAP produced biphasic changes in hindquarters perfusion pressure characterized by initial decreases followed by secondary increases, which were accompanied by biphasic changes in systemic arterial pressure. In terms of relative vasodilator activity in the hindlimb, the order of relative potency was isoproterenol greater than acetylcholine greater than calcitonin gene-related peptide greater than VIP greater than PACAP. PACAP was the only agent that caused a secondary vasoconstrictor response in the hindlimb and produced biphasic changes in systemic arterial pressure. D-Phe2-VIP, a VIP receptor antagonist, blocked the hindquarters vasodilation in response to VIP but had no effect on responses to PACAP. The present investigation shows that PACAP produces pulmonary vasodilation, as well as dilation, and vasoconstriction in the systemic (hindlimb) vascular bed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号