首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
海南龙血树是国产血竭的主要基源植物,其血竭主要化学成分为类黄酮化合物。为进一步了解DcWD40-1在类黄酮生物合成中的潜在功能和作用机制,该研究根据海南龙血树转录组数据,利用RT-PCR技术在海南龙血树中克隆了一个WD40基因DcWD40-1,该基因全长1 550 bp,包含一个1 353 bp的开放阅读框,编码450个氨基酸,蛋白质分子量50.77 kD,理论等电点5.71。生物信息学分析显示,DcWD40-1属于WD40蛋白家族成员,具有5个保守的WD40结构域,和其他植物WD40蛋白同源性高,保守性强。利用Genome Walking方法分离了1 503 bp的DcWD40-1启动子序列,该区域具有典型真核生物启动子结构特征,并含有多个应答激素和胁迫的响应元件。表达分析显示,血竭诱导剂能够诱导Dc WD40-1的表达,DcWD40-1的变化与血竭形成及类黄酮积累正相关。此外,DcWD40-1也能对茉莉酸甲酯、细胞分裂素、油菜素内酯和UV-B处理做出积极响应。  相似文献   

2.
3.
CAK1 encodes a protein kinase in Saccharomyces cerevisiae whose sole essential mitotic role is to activate the Cdc28p cyclin-dependent kinase by phosphorylation of threonine-169 in its activation loop. SMK1 encodes a sporulation-specific mitogen-activated protein (MAP) kinase homolog that is required to regulate the postmeiotic events of spore wall assembly. CAK1 was previously identified as a multicopy suppressor of a weakened smk1 mutant and shown to be required for spore wall assembly. Here we show that Smk1p, like other MAP kinases, is phosphorylated in its activation loop and that Smk1p is not activated in a cak1 missense mutant. Strains harboring a hyperactivated allele of CDC28 that is CAK1 independent and that lacks threonine-169 still require CAK1 to activate Smk1p. The data indicate that Cak1p functions upstream of Smk1p by activating a protein kinase other than Cdc28p. We also found that mutants lacking CAK1 are blocked early in meiotic development, as they show substantial delays in premeiotic DNA synthesis and defects in the expression of sporulation-specific genes, including IME1. The early meiotic role of Cak1p, like the postmeiotic role in the Smk1p pathway, is CDC28 independent. The data indicate that Cak1p activates multiple steps in meiotic development through multiple protein kinase targets.  相似文献   

4.
Role of p50/CDC37 in hepadnavirus assembly and replication   总被引:23,自引:0,他引:23  
  相似文献   

5.
The structure and expression of a cDNA clone (PvPRP1) isolated from a cDNA library prepared from bean (Phaseolus vulgaris) cells treated with fungal elicitor have been characterized. Sequence analysis of the 1.1 kb insert revealed a complete open reading frame which encodes a 32 kDa protein. The protein resembles other proline-rich proteins in plants but possesses several unique features: (i) the N-terminal half of the protein is proline rich and contains three identical repeats of Pro-Val-His-Pro-Pro-Val-Lys-Pro-Pro-Val and six related repeats; (ii) the proline-rich region contains two tracts of six histidine residues; and (iii) the C-terminal half is low in proline and lacks repeats. Genomic blotting experiments suggest the presence of a single PvPRP1 gene as well as more distantly related genes within the bean genome. A dramatic decrease in PvPRP1 mRNA levels occurs within 2 h of elicitor treatment of cell cultures. The PvPRP1 mRNA is present at a moderate level in hypocotyls. Upon wounding, the mRNA level initially decreases over 5 h and then accumulates over 25 h to levels which are higher than the basal level in unwounded hypocotyls. Based on the similarity to other proline-rich proteins with repeated motifs, including the presence of a putative signal peptide, it is likely that the PvPRP1 protein is targetted to the cell wall. The expression of the PvPRP1 gene appears to be integrated with the remodeling of the plant cell wall during the defense response.  相似文献   

6.
Yeast mutants of cell cycle gene cdc48-1 arrest as large budded cells with microtubules spreading aberrantly throughout the cytoplasm from a single spindle plaque. The gene was cloned and disruption proved it to be essential. The CDC48 sequence encodes a protein of 92 kD that has an internal duplication of 200 amino acids and includes a nucleotide binding consensus sequence. Vertebrate VCP has a 70% identity over the entire length of the protein. Yeast Sec18p and mammalian N-ethylmaleimide-sensitive fusion protein, which are involved in intracellular transport, yeast Pas1p, which is essential for peroxisome assembly, and mammalian TBP-1, which influences HIV gene expression, are 40% identical in the duplicated region. Antibodies against CDC48 recognize a yeast protein of apparently 115 kD and a mammalian protein of 100 kD. Both proteins are bound loosely to components of the microsomal fraction as described for Sec18p and N-ethylmaleimide-sensitive fusion protein. This similarity suggests that CDC48p participates in a cell cycle function related to that of N-ethylmaleimide-sensitive fusion protein/Sec18p in Golgi transport.  相似文献   

7.
8.
A member of a new class of protein tyrosine kinases, JAK1, has been mapped to 1p31.3 by in situ hybridization and Southern blot analysis of a panel of mouse-human hybrid cell lines. A murine protein tyrosine kinase, related to, but distinct, from JAK1, was mapped by in situ hybridization to human Chromosome (Chr) 9p24 and 1p31.3.  相似文献   

9.
10.
11.
During the course of large scale purification of the D1 dopamine receptor from rat brain, a protein of approximately 87,000 daltons (p87) was observed to copurify with the D1 receptor through four chromatographic steps. To characterize the nature of this protein, bovine and rat cDNA clones were isolated and sequenced. The bovine and rat clones were highly conserved (98.5% identity). Each clone possessed an open reading frame of 2226 base pairs encoding a protein of 742 amino acids (calculated MW of 82,500), containing three stretches of peptide sequence obtained from p87 sequence analysis. Comparison of the deduced peptide sequence of this protein with those found in available databanks revealed that it was a novel protein related to the family of nutrient transport proteins from eukaryotes and bacteria, including, the mammalian facilitated glucose transporters, the yeast transporters for maltose, lactose, and glucose, and the proton-driven bacterial transporters for arabinose, xylose, and citrate. In addition p87 also shares with these transporters a similar hydropathicity profile that suggests the presence of 12 transmembrane segments. The mRNA for p87 appears to be localized primarily, if not exclusively, to the central nervous system. Northern blot analysis reveals a message of approximately 4.8 kb in cortex, hippocampus, brain stem, and cerebellum, but no detectable signal in peripheral tissues such as spleen, liver, kidney, lung, heart, or skeletal muscle. Evidence form Western blot analysis and immunohistochemistry suggests that this protein may be expressed in intracellular organelles or the membrane of synaptosomes rather than plasma membrane. Based on its structure and properties, p87 appears to define a new class of transporter-like proteins.  相似文献   

12.
13.
Adenovirus E4orf4 (early region 4 open reading frame 4) protein induces protein phosphatase 2A-dependent non-classical apoptosis in mammalian cells and irreversible growth arrest in Saccharomyces cerevisiae. Oncogenic transformation sensitizes cells to E4orf4-induced cell death. To uncover additional components of the E4orf4 network required for induction of its unique mode of apoptosis, we used yeast genetics to select gene deletions conferring resistance to E4orf4. Deletion of YND1, encoding a yeast Golgi apyrase, conferred partial resistance to E4orf4. However, Ynd1p apyrase activity was not required for E4orf4-induced toxicity. Ynd1p and Cdc55p, the yeast protein phosphatase 2A-B subunit, contributed additively to E4orf4-induced toxicity. Furthermore, concomitant overexpression of one and deletion of the other was detrimental to yeast growth, demonstrating a functional interaction between the two proteins. YND1 and CDC55 also interacted genetically with CDC20 and CDH1/HCT1, encoding activating subunits of the anaphase-promoting complex/cyclosome. In addition to their functional interaction, Ynd1p and Cdc55p interacted physically, and this interaction was disrupted by E4orf4, which remained associated with both proteins. The results suggested that Ynd1p and Cdc55p share a common downstream target whose balanced modulation by the two E4orf4 partners is crucial to viability. Disruption of this balance by E4orf4 may lead to cell death. NTPDase-4/Lalp70/UDPase, the closest mammalian homologue of Ynd1p, associated with E4orf4 in mammalian cells, suggesting that the results in yeast are relevant to the mammalian system.  相似文献   

14.
15.
微丝相关新基因hHBrk1的克隆及功能鉴定   总被引:4,自引:0,他引:4  
微丝相关新基因hHBrk1被克隆 .hHBrk1基因位于 3p2 5 3 2 4 1区 ,由 3个外显子和 2个内含子组成 .Northern印迹杂交结果表明hHBrk1基因有 2个转录本 ,在人体 12种组织中均有表达 ,尤以心肌和骨骼肌为著 .hHBRK1蛋白含 75个氨基酸 ,分子量约 9kD ,与动植物界相关蛋白的同源性达 98%~ 35 % .hHBRK1蛋白定位于细胞浆 ,在细胞运动的最前沿富集 ;在有丝分裂期 ,hHBRK1蛋白定位于细胞膜皮质区和缢缩环 .实验结果提示 ,hHBRK1蛋白可能通过调控F 肌动蛋白的聚合而参与调控细胞运动、分化等基础生命活动 .  相似文献   

16.
17.
A novel dynamin-like GTPase gene, Pfdyn1, was cloned from an asexual stage cDNA library of Plasmodium falciparum Dd2 strain. Pfdyn1 contains a highly conserved N-terminal tripartite GTPase domain, a coiled-coil region, and a C-terminal 129 aa unknown function domain. Like yeast Vps1p, it lacks pleckstrin homology domain and proline-rich region. Western blot analysis showed that Pfdyn1 is a Triton X-100 insoluble protein expressed only in the mature sub-stage. Morphological studies indicated that Pfdyn1 is partly co-localized with PfGRP, a known ER-resident protein, and localizes diffusely with several membrane structures and a 60-100 nm vesicle both inside and on surface of the parasites and also in the cytoplasm of infected erythrocytes. The dsRNA originated by C-terminus fragment of Pfdyn1 inhibits markedly the growth of P. falciparum parasite at the erythrocyte stage. Those data showed that Pfdyn1 is a conservative, membrane related protein and plays an essential role for the survival of Plasmodium parasite.  相似文献   

18.
Arabidopsis WAVE-DAMPENED 2 (WVD2) was identified by forward genetics as an activation-tagged allele that causes plant and organ stockiness and inversion of helical root growth handedness on agar surfaces. Plants with high constitutive expression of WVD2 or other members of the WVD2-LIKE (WDL) gene family have stems and roots that are short and thick, have reduced anisotropic cell elongation, are suppressed in a root-waving phenotype, and have inverted handedness of twisting in hypocotyls and roots compared with wild-type. The wvd2-1 mutant shows aberrantly organized cortical microtubules in peripheral root cap cells as well as reduced branching of trichomes, unicellular leaf structures whose development is regulated by microtubule stability. Orthologs of the WVD2/WDL family are found widely throughout the plant kingdom, but are not similar to non-plant proteins with the exception of a C-terminal domain distantly related to the vertebrate microtubule-associated protein TPX2. in vivo, WVD2 and its closest paralog WDL1 are localized to interphase cortical microtubules in leaves, hypocotyls and roots. Recombinant glutathione-S-transferase:WVD2 or maltose binding protein:WVD2 protein bind to and bundle microtubules in vitro. We speculate that a C-terminal domain of TPX2 has been utilised by the WVD2 family for functions critical to the organization of plant microtubules.  相似文献   

19.
Mutation in CDC48 (cdc48(S565G)), a gene essential in the endo-plasmic reticulum (ER)-associated protein degradation (ERAD) pathway, led to the discovery of apoptosis as a mechanism of cell death in the unicellular organism Saccharomyces cerevisiae. Elucidating Cdc48p-mediated apoptosis in yeast is of particular interest, because Cdc48p is the highly conserved yeast orthologue of human valosin-containing protein (VCP), a pathological effector for polyglutamine disorders and myopathies. Here we show distinct proteomic alterations in mitochondria in the cdc48(S565G) yeast strain. These observed molecular alterations can be related to functional impairment of these organelles as suggested by respiratory deficiency of cdc48(S565G) cells. Mitochondrial dysfunction in the cdc48(S565G) strain is accompanied by structural damage of mitochondria indicated by the accumulation of cytochrome c in the cytosol and mitochondrial enlargement. We demonstrate accumulation of reactive oxygen species produced predominantly by the cytochrome bc1 complex of the mitochondrial respiratory chain as suggested by the use of inhibitors of this complex. Concomitantly, emergence of caspase-like enzymatic activity occurs suggesting a role for caspases in the cell death process. These data strongly point for the first time to a mitochondrial involvement in Cdc48p/VCP-dependent apoptosis.  相似文献   

20.
In normal and transformed cells, the F-box protein p45(SKP2) is required for S phase and forms stable complexes with p19(SKP1) and cyclin A-cyclin-dependent kinase (CDK)2. Here we identify human CUL-1, a member of the cullin family, and the ubiquitin-conjugating enzyme CDC34 as additional partners of p45(SKP2) in vivo. CUL-1 also associates with cyclin A and p19(SKP1) in vivo and, with p45(SKP2), they assemble into a large multiprotein complex. In Saccharomyces cerevisiae, a complex of similar molecular composition (an F-box protein, a member of the cullin family and a homolog of p19(SKP1)) forms a functional E3 ubiquitin protein ligase complex, designated SCFCDC4, that facilitates ubiquitination of a CDK inhibitor by CDC34. The data presented here imply that the p45(SKP2)-CUL-1-p19(SKP1) complex may be a human representative of an SCF-type E3 ubiquitin protein ligase. We propose that all eukaryotic cells may use a common ubiquitin conjugation apparatus to promote S phase. Finally, we show that multiprotein complex formation involving p45(SKP2)-CUL-1 and p19(SKP1) is governed, in part, by periodic, S phase-specific accumulation of the p45(SKP2) subunit and by the p45(SKP2)-bound cyclin A-CDK2. The dependency of p45(SKP2)-p19(SKP1) complex formation on cyclin A-CDK2 may ensure tight coordination of the activities of the cell cycle clock with those of a potential ubiquitin conjugation pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号