首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods based on UV-visible diffuse reflectance spectroscopy were used to study the physiological aspects of lignin-peroxidase biosynthesis by Phanerochaete chrysosporium. Here we introduce the use of cytochrome aa3 as an indicator of active fungal biomass and of its redox state to calculate the oxygen mass transport coefficient between the growth medium and the fungal cell interior. When lignin peroxidase biosynthesis was enhanced by the addition of Tween 80 or Tween 20 to the growth medium, a higher proportion of reduced cytochrome aa3 and a higher oxygen diffusion barrier were observed compared with control cultures. In cultures supplemented with Tween 80 or Tween 20, a higher oxygen mass transport coefficient between the growth medium and the interior of the fungal cell was also found. The beginning of the lignin peroxidase activity in these cultures was found to coincide with a temporary cessation in the dry biomass increase and a reduction in the relative active-biomass concentration. During the lignin peroxidase activity, a decrease in the intracellular pH and an increase in the growth medium pH were determined in cultures supplemented with Tween 80.  相似文献   

2.
Suspension cell cultures of Nicotiana tabacum L. inoculated with the incompatible pathogen Pseudomonas syringae pv pisi undergo a hypersensitive reaction. Addition of the singlet oxygen quencher bixin to cell suspensions had no effect on hypersensitive cell death. Addition of the singlet oxygen quencher 1,4-diazabicyclo octane (DABCO) increased the medium pH and delayed the onset of cell death. This delay was eliminated when cell suspensions were buffered, and could also be induced by increasing medium pH with KOH. Bixin and DABCO also did not suppress the hypersensitive reaction in tobacco leaves. These data do not support a role for singlet oxygen in the hypersensitive reaction. Medium pH, however, appears to be a critical factor in cell suspension cultures.  相似文献   

3.
The division rate of Cricosphaera elongata was measured as a function of pH in a medium buffered with the CO2-bicarbonate-carbonate system. The optimum pH for cell division of the coccolithophorid was 7.8. A change of the partial pressure of CO2 in the medium from 0.03 to 5% did not affect the division rate. Between pH 6.4 and 7.8 changes in the bicarbonate concentration from 0.1 to 6.0 mm and carbonate concentration from 0.007 to 0.1 mm did not affect the rate of division. At loiv experimental pH, C. elongata was nonmotile and grew in clumps; at higher pH values, it was motile and solitary. Coccoliths were not found covering C. elongata if calcite was soluble in the medium.  相似文献   

4.
Daucus carota cell differentiation was examined under different medium pH conditions in a controlled bioreactor. Somatic embryogenesis was affected by pH changes. Embryo production was greatest when the pH of the hormone-free medium was maintained at 4.3. However, the same level was not favourable to development since most embryos did not progress to the torpedo and plantlet stages. In contrast, although there was about a threefold decrease in embryo yield in cultures on the same free 2,4-dichlorophenoxyacetic acid medium maintained at pH 5.8, cells differentiated into fully developed plantlets. Changes in embryo development appeared to be associated with alterations in ammonium loss from the medium and sugar uptake.Abbreviation 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

5.
Screening cultures are usually non-monitored and non-controlled due to a lack of appropriate measuring techniques. A new device for online measurement of oxygen transfer rate (OTR) in shaking-flask cultures was used for monitoring the screening of Hansenula polymorpha. A shaking frequency of 300 rpm and a filling volume of 20 ml in 250-ml flasks ensured a sufficient oxygen transfer capacity of 0.032 mol (l h)–1 and thus a respiration not limited by oxygen. Medium buffered with 0.01 mol phosphate l–1 (pH 6.0) resulted in pH-inhibited respiration, whereas buffering with 0.12 mol phosphate l–1 (pH 4.1) resulted in respiration that was not inhibited by pH. The ammonium demand was balanced by establishing fixed relations between oxygen, ammonium, and glycerol consumption with 0.245±0.015 mol ammonium per mol glycerol. Plate precultures with complex glucose medium reduced the specific growth rate coefficient to 0.18 h–1 in subsequent cultures with minimal glycerol medium. The specific growth rate coefficient increased to 0.26 h–1 when exponentially growing precultures with minimal glycerol medium were used for inoculation. Changes in biomass, glycerol, ammonium, and pH over time were simulated on the basis of oxygen consumption.  相似文献   

6.
Maize (Zea mays L.) haploid cells were cultivated in a 1500 ml aerated and stirred batch bioreactor using modified BM medium. Cell growth was highly affected by pH and dissolved oxygen, and we observed two fairly distinct growth phases. During the first two days after inoculation at pH 5.8, oxygen consumption was high and the cells lowered the pH to a value around 4.3. After this period the pH stabilized at 4.5 and the dissolved oxygen reached a steady level. Decreasing dissolved oxygen concentration leads to lower growth rate and to higher pH. Both events mean stress conditions for the cell culture and probably result in increased genetic variability, and the loss of regeneration capacity. The stress condition during the adaptation phase can be eliminated by decreasing the pH of the medium to 4.7 before inoculation and by keeping dissolved oxygen above 40%. These conditions provide prolonged exponential growth dynamics and the cell suspensions could be the basis of large scale cultures also.Abbreviations 2,4-d 2,4-dichlorophenoxyacetitc acid - NAA naphthalene acetic acid  相似文献   

7.
We optimized culture medium and batch-fed fermentation conditions to enhance production of an acetyl esterase from Pseudomonas sp. ECU1011 (PSAE). This enzyme enantioselectively deacetylates α-acetoxyphenylacetic acid. The medium was redesigned by single-factor and statistical optimization. The addition of ZnSO4 enhanced enzyme production by 37%. Yeast extract concentration was directly associated with the enzyme production. The fermentation was scaled up in a 5-l fermenter with the optimized medium, and the correlations between enzyme production and dissolved oxygen, pH, and feeding strategy were investigated. The fermentation process was highly oxygen-demanding, pH sensitive and mandelic acid-inducible. The fermentation pH was controlled at 7.5 by a pH and dissolved oxygen feedback strategy. Feeding mandelic acid as both a pH regulator and an enzyme inducer increased the enzyme production by 23%. The results of the medium redesign experiments were confirmed and explained in fed-batch culture experiments. Mathematical models describing the fermentation processes indicated that the enzyme production was strongly associated with cell growth. The optimized pH and dissolved oxygen stat fed-batch process resulted high volumetric production of PSAE (4166 U/l, 7.2-fold higher than the initial) without enantioselectivity decline. This process has potential applications for industrial production of chiral mandelic acid or its derivatives.  相似文献   

8.
The effect of the relative oxygen partial pressure (pO2) in bioreactors on cell proliferation and subsequent differentiation of somatic embryos from suspension cultures of Cyclamen persicum Mill. was investigated. The growth rate of cell line 3738-VIII in growth-regulator containing medium in bioreactors at 5% pO2 was slightly reduced in comparison to 10% and 20% pO2. Cultures growing at 40% pO2 had a lower growth rate, a markedly reduced cell viability and showed a decrease of the medium pH to 3.5. Because a pH-control with a setpoint of 3.3 caused cell death within 4 days, it was assumed, that the reason for the poor cell proliferation and viability in the cultures at 40% pO2 was an effect of medium acidification rather than of the high O2 partial pressure. A significantly higher number of germinating embryos was obtained from the cultures grown at 40% pO2 than from those grown in flasks or in bioreactors at 5%, 10% and 20% pO2. These results were specific for cell line 3738-VIII. Another cell line, 3736-12, did not show marked differences in cell proliferation, viability, pH or subsequent regeneration of somatic embryos when grown at different O2 partial pressures. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Recently, we engineered a Pichia pastoris Mut+ strain to produce and secrete recombinant Litopenaeus vannamei trypsinogen. Despite the observed toxicity of the recombinant shrimp trypsinogen to the P. pastoris cell host, when high density cell cultures in shake flasks with alanine in the induction medium were used recombinant shrimp trypsinogen could be produced. To further improve the product yield, in this work, we evaluated L. vannamei trypsinogen production in P. pastoris using a bioreactor and two recombinant P. pastoris strains with different methanol utilization (Mut) phenotypes. The effect of pH and temperature during the induction step on the trypsinogen production was also evaluated. The results indicate that temperature, pH, and Mut phenotypes influence the production of the recombinant protein, with almost no observed effect on cell growth. All cultures with the Mut+ strain had significant operational difficulties, such as in lowering the induction temperature, maintaining dissolved oxygen (DO) above 20%, and maintaining the methanol concentration at a constant value, and showed a decrease in metabolic activity due to trypsinogen toxicity to the cell host. In the culture with the Muts strain, however, the temperature, methanol concentration, and DO could be more easily controlled, the temperature could be easily decreased, and the trypsinogen caused the lowest toxicity to the host cells. After 96 h of Muts strain induction (pH 6 and 25°C), about 250 mg/L recombinant trypsinogen was detected in the culture medium. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 2013  相似文献   

10.
The effects of low medium pH (4.50, 5.00 and 5.75) on in vitro growth and on several biochemical parameters (lipid peroxidation, proline and carbohydrate content, antioxidant enzymes activities and total soluble protein) of Plantago almogravensis and P. algarbiensis micropropagated shoots were investigated. Overall, it was observed that medium pH did not affect in vitro proliferation and rooting. Interestingly, cultures of both species modify the initial pH value to the same final value. Results have shown that the lowest pH tested induced an increase in the level of lipid peroxidation in roots of both species and in shoots of P. algarbiensis, indicating plasma membrane damage. An accumulation of carbohydrates was observed in roots of P. almogravensis cultured in pH 4.50 and 5.00. It was observed a slight response of the enzymatic system to medium pH, particularly in P. almogravensis. Based on the results obtained we can conclude that Plantago species are apt to grow in vitro in medium with pH values much lower than the usually used in tissue culture, which is in agreement with the fact that both species colonize acid soils.  相似文献   

11.
Summary Aspergillus niger was grown in batch culture containing various initial concentrations of sodium phosphate buffer (pH 6.5). A wild-type strain of A. niger and a transformed strain producing hen egg-white lysozyme were studied. The maximum cell yield was attained in medium not supplemented with phosphate. In those cultures acidification of the medium resulted in a minimum of pH 2.0 before reverting to near neutrality. Increasing the initial levels of phosphate buffer reduced the fall in pH but lowered cell yields. Secreted levels of lysozyme were maximal in the 50–100 mm range of added phosphate buffer although mycelial yields were reduced by one third of mycelial yields in medium unsupplemented with phosphate buffer. Offprint requests to: D. B. Archer  相似文献   

12.
Saccharomyces cerevisiae and Saccharomyces carlsbergensis were grown in batch culture with and without oxygen control. The concentrations of A-, B- and C-type cytochromes of both yeasts were dependent on the oxygen concentration during growth as well as on the initial glucose concentration of the growth medium. S. cerevisiae cytochromes were maximal after growth in low glucose and low oxygen; S. carlsbergensis cytochromes were maximal after growth in low glucose and high oxygen. Except when glucose was in very low concentration, its catabolism by S. carlsbergensis was directed predominantly towards ethanolic fermentation regardless of the oxygen concentration. Growth rate, total cell mass and yield were maximal, and anabolism was closely balanced with catabolism, when glucose and oxygen of S. carlsbergensis cultures were both high. Under these conditions neither catabolism, respiratory or ethanolic, nor glucose uptake were maximal.  相似文献   

13.
Cells of the obligately lithotrophic species Nitrosomonas europaea and Nitrosomonas eutropha were able to nitrify and denitrify at the same time when grown under oxygen limitation. In addition to oxygen, nitrite was used as an electron acceptor. The simultaneous nitrification and denitrification resulted in significant formation of the gaseous N-compounds nitrous oxide and dinitrogen, causing significant nitrogen loss. In mixed cultures of N. europaea and various chemoorganotrophic bacteria, the nitrogen loss was strongly influenced by the partners growing under oxygen limitation. Under anoxic conditions, pure cultures of N. eutropha were able to denitrify with molecular hydrogen as electron donor and nitrite as the only electron acceptor in a sulfide-reduced complex medium. The increase of cell numbers was directly coupled to nitrite reduction. Nitrous oxide and dinitrogen were the only detectable end products. In pure cultures of N. eutropha and mixed cultures of N. eutropha and Enterobacter aerogenes, ammonium and nitrite disappeared slowly at a molar ratio of about one when oxygen was absent. However, under these conditions cell growth was not measurable.  相似文献   

14.
Abstract

In plants, an increased production of toxic oxygen species is commonly observed under low oxygen stress, but cellular responses still have to be fully investigated. Plant cell cultures can be a valuable tool to study plant metabolic responses to various environmental stresses including low oxygen condition. Arabidopsis suspension cultures growing in shake flasks were subjected to hypoxia by stopping shaking for different intervals, showing an increase of the antioxidant metabolite α‐tocopherol. In order to obtain a more controlled condition, cultivation of Arabidopsis suspension cultures was established in a 5‐l stirred bioreactor. A constant aeration of 20% dissolved oxygen was found to be the most suitable for cell growth. A 4‐h anoxic shock was induced by suspending the aeration and flushing into the vessel with nitrogen. During the anoxic stress, tocopherol levels resulted increased at the end of the treatment, indicating that the complete oxygen deprivation, indeed, induced a defence response involving antioxidant metabolism. The presence of an oxidative stress as a consequence of anoxic condition was also confirmed by the increased levels of H2O2. Overall, these results indicate that Arabidopsis suspension cultures grown in a stirred bioreactor can be a useful in vitro system for investigating low oxygen stress.  相似文献   

15.
Pseudomonas aeruginosa PR3 (NRRL B-18602) converts oleic acid to a novel compound, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD). Parameters that included medium volume, cell growth time, gyration speed, pH, substrate concentration, and dissolved oxygen concentration were evaluated for a scale-up production of DOD in batch cultures using Fernbach flasks and a bench-top bioreactor. Maximum production of about 2 g DOD (38% yield) was attained in Fernbach flasks containing 500 ml medium when cells were grown at 28°C and 300 rpm for 16–20 h and the culture was adjusted to pH 7 prior to substrate addition. Increases of medium volume and substrate concentration failed to enhance yield. When batch cultures were initially conducted in a reactor, excessive foaming occurred that made the bioconversion process inoperable. This was overcome by a new aeration mechanism that provided adequate dissolved oxygen to the fermentation culture. Under the optimal conditions of 650 rpm, 28°C, and 40–60% dissolved oxygen concentration, DOD production reached about 40 g (40% yield) in 4.5 L culture medium using a 7-L reactor vessel. This is the first report on a successful scale-up production of DOD. Received: 26 September 2002 / Accepted: 24 October 2002  相似文献   

16.
Photosynthetic activity and growth physiology of Spirulina platensis (Nordstedt) Geitler cultures maintained at ultrahigh cell densities (i.e. above 100 mg chlorophyll-L?1) in a newly designed photobioreactor were investigated. Nitrogen (NaNO3) in standard Zarouk medium was characterized as a major nutrient-limiting factor in such cultures. The effect of ultrahigh cell density on photoinhibition of photosynthesis, as reflected by chlorophyll fluorescence and photosynthetic oxygen evolution, was studied: elevating the population density may arrest photoinhibition induced by high photon flux density, as well as low temperature. The relationship between incident irradiance and oxygen production rate was linear in situ for cultures at the optimal cell density, indicating that light limitation rather than light saturation or photoinhibition is the dominant condition outdoors in cultures of ultrahigh cell densities. In contrast with other reports, the extent of biomass loss at night due mainly to dark respiration was found to be relatively small when cell density was optimal, exerting only a minor effect on overall net productivity. Measurements of oxygen consumption at night revealed low rates of respiration, which may be explained by the low value of the volumetric mass transfer coefficient (KLa) of oxygen. Hence, reduced oxygen tension may play a role in preventing full expression of the respiratory potential in ultrahigh cell density cultures in which photoadaptive strategy may explain cell composition. Ultrahigh cell densities optimized with respect to the intensity of the light source, the length of the light path, and the extent of stirring represent the key for obtaining high output rates of cell mass and some natural products.  相似文献   

17.
Production of the bacteriocin pediocin SM‐1 by Pediococcus pentosaceus Mees 1934 was investigated in pH‐controlled batch and chemostat cultures using a complex medium containing glucose, sucrose or fructose. In chemostat cultures operated at 150 rpm, 30°C, 60% dissolved oxygen tension, pH 6.5, and D = 0.148 h?1, the pediocin titer reached 185 AU/mL representing an increase of 32% compared with batch cultures in which glucose was used as the carbon source. Pediocin biosynthesis was markedly affected by the growth rate of the producer microorganism. For all carbon sources tested, pediocin production appeared to take place only at dilution rates lower than μmax. However, only glucose supported production at the very low dilution rate of 0.05 h?1 indicating a direct regulation of pediocin biosynthesis by the carbon source. Glucose supported higher biomass productivity and higher pediocin titers and yields compared with the other sugars used. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1481–1486, 2015  相似文献   

18.
The production of carbohydrates by cell suspension cultures of Phleum pratense (timothy grass) is described. Extracellular polysaccharides similar in monosaccharide composition to native cell wall polymers were accumulated, together with polymers of fructose (fructans). The fructans had similar properties to the intracellular reserve polymers found in intact plants, and were found in both cells and media of young, slow-growing cultures.Production of extracellular polysaccharides differed in cultures grown on sucrose or equimolar glucose/fructose as carbon source. These differences were observed only when autoclaved media were used, and were not related to changes in either pH or osmolarity. Autoclaving medium containing radioactive glucose and fructose produced a novel, unidentified labelled compound which was absent in medium containing labelled sucrose.  相似文献   

19.
Conditions of maximum induction of back mutations byN-methyl-N-nitroso-N′-nitroguanidine (“nitrosoguanidine”) were studied in auxotrophic mutants ofMycobacterium phlei. In asynchronous cultures the effects of pH, buffer molarity and concentration and exposure time to nitrosoguanidine were studied. It was shown that between 6 and 10, pH does not affect the induction of back mutations but that with increasing pH up to 9 the lethal effect of nitrosoguanidine on cells is increased. Protracted treatment with nitrosoguanidine or buffer molarity did not affect the induction of back mutations. It was found with several strains ofMycobacterium phlei that it is most efficient to treat a culture with 0.5 mg or 1 mg nitrosoguanidine/ml for 20 min at pH 6. On the basis of these findings a method of induction of back mutations by nitrosoguanidine was developed for populations with synchronous cell division.  相似文献   

20.
Summary Cellular impermeability associated with sporulating cells of Saccharomyces cerevisiae is caused by a rapid increase in the medium pH. Three factors have been identified as being important in regulating the rise in medium pH: 1) the cell density, 2) the potassium acetate concentration of the sporulation medium, and 3) and initial pH below 6.0. Sporulation conditions were established for strain 4579 which resulted in optimum uptake of 3H-adenine at T7, a period when the cells would be normally impermeable. Pulse-labeled polysomal RNA was characterized at T4 in naturally permeable cells of strain SK-1 and impermeable cells which required manipulation of the medium pH to facilitate uptake. Transfer ribonucleic acid (RNA), poly A-containing RNA and ribosomal RNA were synthesized in both cultures during the 20 min pulse. Furthermore, the rate of ribosomal RNA synthesis and processing into functional ribosomes approached the rate reported for vegetative cells. Initial sporulation conditions which caused a prolonged delay in the rise in medium pH adversely affected the kinetics of appearance and number of ascospores. The affect was shown to be on meiotic events since a reduction of sporulation was always accompanied by a reduction in the amount of intragenic recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号