首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Incorporated with the Z curve method, the technique of wavelet multiresolution (also known as multiscale) analysis has been proposed to identify the boundaries of isochores in the human genome. The human MHC sequence and the longest contigs of human chromosomes 21 and 22 are used as examples. The boundary between the isochores of Class III and Class II in the MHC sequence has been detected and found to be situated at the position 2,490,368bp. This result is in good agreement with the experimental evidence. An isochore with a length of about 7Mb in chromosome 21 has been identified and found to be gene- and Alu-poor. We have also found that the G+C content of chromosome 21 is more homogeneous than that of chromosome 22. Compared with the window-based methods, the present method has the highest resolution for identifying the boundaries of isochores, even at a scale of single base. Compared with the entropic segmentation method, the present method has the merits of more intuitiveness and less calculations. The important conclusion drawn in this study is that the segmentation points, at which the G+C content undergoes relatively dramatic changes, do exist in the human genome. These 'singularity' points may be considered to be candidates of isochore boundaries in the human genome. The method presented is a general one and can be used to analyze any other genomes.  相似文献   

2.
An isochore map of the human genome based on the Z curve method   总被引:4,自引:0,他引:4  
Zhang CT  Zhang R 《Gene》2003,317(1-2):127-135
The distribution of the G+C content in the human genome has been studied by using a windowless technique derived from the Z curve method. The most important findings presented in this paper are twofold. First, abrupt variations of the G+C content along human chromosome sequences are the main variation patterns of G+C content. It is found that at some sites, the G+C content undergoes abrupt changes from a G+C-rich region to a G+C-poor region alternatively and vice versa. Second, it is shown that long domains with relatively homogeneous G+C content along each chromosome do exist. These domains are thought to be isochores, which usually have sharp boundaries. Consequently, 56 isochores longer than 3 Mb have been identified in chromosomes 1-22, X and Y. Boundaries, size and G+C content of each isochore identified are listed in detail. As an example to demonstrate the power of the method, the boundary between the Classes III and II isochores of the MHC sequence has been determined and found to be at 2,477,936, which is in good agreement with the experimental evidence. A homogeneity index is introduced to measure the homogeneity of G+C content in isochores. We emphasize that the homogeneity of G+C content is relative. The isochores in which the G+C content keeps absolutely constant do not exist. Isochore structures appear to be a basic organization of the human genome. Due to the relevance to many important biological functions, the clarification of isochore structures will provide much insight into the understanding of the human genome.  相似文献   

3.
The genomic distribution of 23 nuclear genes from three dicotyledons (pea, sunflower, tobacco) and five monocotyledons of the Gramineae family (barley, maize, rice, oat, wheat) was studied by localizing these genes in DNA fractions obtained by preparative centrifugation in Cs2SO4/BAMD density gradients. Each one of these genes (and of many other related genes and pseudogenes) was found to be located in DNA fragments (50-100 Kb in size) that were less than 1-2% GC apart from each other. This definitively demonstrates the existence of isochores in plant genomes, namely of compositionally homogeneous DNA regions at least 100-200 Kb in size. Moreover, the GC levels of the 23 coding sequences studied, of their first, second and third codon positions, and of the corresponding introns were found to be linearly correlated with the GC levels of the isochores harboring those genes. Compositional correlations displayed increasing slopes when going from second to first to third codon position with obvious effects on codon usage. Coding sequences for seed storage proteins and phytochrome of Gramineae deviate from the compositional correlations just described. Finally, CpG doublets of coding sequences were characterized by a shortage that decreased and vanished with increasing GC levels of the sequences. A number of these findings bear a striking similarity with results previously obtained for vertebrate genes.  相似文献   

4.
The genomes of eukaryotes are mosaics of isochores. These are long DNA stretches that are fairly homogeneous in base composition and that belong to a small number of families characterized by different ratios of GC to AT and different short-sequence patterns (i.e., different DNA structures that interact with different proteins). This genome organization led to two discoveries: (1) the genomic code, which refers to two correlations, that of the composition of coding and contiguous noncoding sequences, and that of coding sequences and the structural properties of the encoded proteins; and (2) the genome phenotypes, which correspond to the patterns of isochore families in the genomes. These patterns indicate that genome evolution may proceed either according to a conservative mode or to a transitional (isochore shifting) mode, apparently depending upon whether the environment is constant or shifting. According to the neoselectionist theory, natural selection is responsible for both modes.  相似文献   

5.
The compositional distributions of high molecular weight DNA fragments from 20 species belonging to 9 out of the 17 eutherian orders were investigated by analytical CsCl density gradient centrifugation and by preparative fractionation in Cs2SO4/BAMD density gradients followed by analysis of the fractions in CsCl. These compositional distributions reflect those of the isochores making up the corresponding genomes. A “general distribution” was found in species belonging to eight mammalian orders. A “myomorph distribution” was found in Myomorpha, but not in the other rodent infraorders Sciuromorpha and Histricomorpha, which share the general distribution. Two other distributions were found in a megachiropteran (but not in microchiropteran, which, again, shares the general distribution) and in pangolin (a species from the only genus of the order Pholidota), respectively. The main difference between the general distribution and all other distributions is that the former contains sizable amounts (6–10%) of GC-rich isochores (detected as DNA fragments equal to, or higher than, 1.710 g/cm3 in modal buoyant density), which are scarce, or absent, in the other distributions. This difference is remarkable because gene concentrations in mammalian genomes are paralleled by GC levels, the highest gene concentrations being present in the GC-richest isochores. The compositional distributions of mammalian genomes reported here shed light on mammalian phylogeny. Indeed, all orders investigated, with the exception of Pholidota, seem to share a common ancestor. The compositional patterns of the megachiropteran and of Myomorpha may be derived from the general pattern or have independent origins.  相似文献   

6.
Zhang W  Wu W  Lin W  Zhou P  Dai L  Zhang Y  Huang J  Zhang D 《PloS one》2010,5(10):e13303

Background

The isochore, a large DNA sequence with relatively small GC variance, is one of the most important structures in eukaryotic genomes. Although the isochore has been widely studied in humans and other species, little is known about its distribution in pigs.

Principal Findings

In this paper, we construct a map of long homogeneous genome regions (LHGRs), i.e., isochores and isochore-like regions, in pigs to provide an intuitive version of GC heterogeneity in each chromosome. The LHGR pattern study not only quantifies heterogeneities, but also reveals some primary characteristics of the chromatin organization, including the followings: (1) the majority of LHGRs belong to GC-poor families and are in long length; (2) a high gene density tends to occur with the appearance of GC-rich LHGRs; and (3) the density of LINE repeats decreases with an increase in the GC content of LHGRs. Furthermore, a portion of LHGRs with particular GC ranges (50%–51% and 54%–55%) tend to have abnormally high gene densities, suggesting that biased gene conversion (BGC), as well as time- and energy-saving principles, could be of importance to the formation of genome organization.

Conclusion

This study significantly improves our knowledge of chromatin organization in the pig genome. Correlations between the different biological features (e.g., gene density and repeat density) and GC content of LHGRs provide a unique glimpse of in silico gene and repeats prediction.  相似文献   

7.
8.
The isochore structure of the nuclear genome of angiosperms described by Salinas et al. (1) was confirmed by using a different experimental approach, namely by showing that the levels of coding sequences from both dicots and Gramineae are linearly correlated with GC levels of the corresponding flanking sequences. The compositional distribution of homologous coding sequences from several orders of dicots and from Gramineae were also studied and shown to mimick the compositional distributions previously seen (1) for coding sequences in general, most coding sequences from Gramineae being much higher than those of the dicots explored. These differences were even stronger for third codon positions and led to striking codon usages for many coding sequences especially in the case of Gramineae.  相似文献   

9.
The elucidation of the 3.2-gigabase human genome will have various impacts on drug discovery. The number of drug targets will increase by at least one order of magnitude and target validation will become a high-throughput process. To benefit from these opportunities, a theory-based integration of the vast amount of new biological data into models of biological systems is called for. The skills and knowledge required for genome-based drug discovery of the future go beyond the traditional competencies of the pharmaceutical industry. Cooperation with biotechnology firms and research institutions during drug discovery and development will become even more important.  相似文献   

10.
Since the human genome was decoded, great emphasis has been placed on the unique, personal nature of the genome, along with the benefits that personalized medicine can bring to individuals and the importance of safeguarding genetic privacy. As a result, an equally important aspect of the human genome – its common nature – has been underappreciated and underrepresented in the ethics literature and policy dialogue surrounding genetics and genomics. This article will argue that, just as the personal nature of the genome has been used to reinforce individual rights and justify important privacy protections, so too the common nature of the genome can be employed to support protections of the genome at a population level and policies designed to promote the public's wellbeing. In order for public health officials to have the authority to develop genetics policies for the sake of the public good, the genome must have not only a common, but also a public, dimension. This article contends that DNA carries a public dimension through the use of two conceptual frameworks: the common heritage (CH) framework and the common resource (CR) framework. Both frameworks establish a public interest in the human genome, but the CH framework can be used to justify policies aimed at preserving and protecting the genome, while the CR framework can be employed to justify policies for utilizing the genome for the public benefit. A variety of possible policy implications are discussed, with special attention paid to the use of large‐scale genomics databases for public health research.  相似文献   

11.
The completed human genome: implications for chemical biology   总被引:3,自引:0,他引:3  
The recently completed human genome sequence represents an enormous opportunity to understand biology and accelerate the development of new therapeutics. However, it also presents equally large logistical, scientific and paradigmatic challenges to efficiently translate the enormous cache of sequence data into functional information that will be the precursor of new drug development. Small-molecule chemical biology applied on a genomic scale promises to speed this translation to novel therapeutics.  相似文献   

12.
13.
Proteins destined for secretion or membrane compartments possess signal peptides for insertion into the membrane. The signal peptide is therefore critical for localization and function of cell surface receptors and ligands that mediate cell-cell communication. About 4% of all human proteins listed in UniProt database have signal peptide domains in their N terminals. A comprehensive literature survey was performed to retrieve functional and disease associated genetic variants in the signal peptide domains of human proteins. In 21 human proteins we have identified 26 disease associated mutations within their signal peptide domains, 14 mutations of which have been experimentally shown to impair the signal peptide function and thus influence protein transportation. We took advantage of SignalP 3.0 predictions to characterize the signal peptide prediction score differences between the mutant and the wild-type alleles of each mutation, as well as 189 previously uncharacterized single nucleotide polymorphisms (SNPs) found to be located in the signal peptide domains of 165 human proteins. Comparisons of signal peptide prediction outcomes of mutations and SNPs, have implicated SNPs potentially impacting the signal peptide function, and thus the cellular localization of the human proteins. The majority of the top candidate proteins represented membrane and secreted proteins that are associated with molecular transport, cell signaling and cell to cell interaction processes of the cell. This is the first study that systematically characterizes genetic variation occurring in the signal peptides of all human proteins. This study represents a useful strategy for prioritization of SNPs occurring within the signal peptide domains of human proteins. Functional evaluation of candidates identified herein may reveal effects on major cellular processes including immune cell function, cell recognition and adhesion, and signal transduction.  相似文献   

14.
Majewski J  Ott J 《Gene》2003,305(2):167-173
Functional differences between amino acids have long been of interest in understanding protein evolution. Several indices exist for comparing residues on the basis of their physicochemical properties and frequencies of occurrence in conserved protein alignments. Here we present a residue dissimilarity index based on coding single nucleotide polymorphisms (SNPs) in the human genome. The index represents an average, organism-wide set of differences between residues and provides important insight into evolutionary restraints on residue substitutions in the human genome. Unlike previous models, it is not restricted to highly conserved protein structures, nor confounded by evolutionary differences between species. Our results confirm earlier observations regarding residue mutabilities but also suggest that in addition to the established key properties, such as size and polarity, charge conservation may be an important and currently underestimated factor in protein evolution. We also estimate that less than 51% of amino acid substitutions occurring in the human genome are evolutionarily neutral.  相似文献   

15.
Iudinkova ES  Razin SV 《Genetika》2003,39(2):182-186
The specific features of genome domains lacking distinct boundaries are considered. These domains cannot be mapped by testing extended genome regions for nuclease sensitivity and thereby differ from structural domains determined at the level of DNA folding in chromatin. Yet they possess the properties of typical functional domains, containing a gene or several coordinated genes along with a complex of cis-regulatory elements, which control these genes. Domains with vague boundaries may be mapped with certain structural tests, e.g., by assessing histone acetylation or the distribution of tissue-specific DNase I-hypersensitive sites through extended genome regions. The mechanisms are described in detail that regulate the function of genes in domains with vague boundaries, including overlapping domains with genes differing in tissue specificity of expression.  相似文献   

16.
17.
SNPing in the human genome   总被引:4,自引:0,他引:4  
More than a million genetic markers in the form of single nucleotide polymorphisms are now available for use in genotype-phenotype studies in humans. The application of new strategies for representational cloning and sequencing from genomes combined with the mining of high-quality sequence variations in clone overlaps of genomic and/or cDNA sequences has played an important role in generating this new resource. The focus of variation analysis is now shifting from the identification of new markers to their typing in populations, and novel typing strategies are rapidly emerging. Assay readouts on oligonucleotide arrays, in microtiter plates, gels, flow cytometers and mass spectrometers have all been developed, but decreasing cost and increasing throughput of DNA typing remain key if high-density genetic maps are to be applied on a large scale.  相似文献   

18.
Impressive progress has been made during the past several decades in understanding the pathogenesis of human genetic disease. The tools of molecular biology have allowed the isolation of many disease-related genes by forward and a few by reverse genetics, and the imminent completion of a complete human genetic linkage map will accelerate the genetic characterization of many more genetic diseases. The major impacts of the molecular characterization of human genetic diseases will be 1. To increase markedly the number of human diseases that we recognize to have major genetic components. We already understand that genetic diseases are not rare medical curiosities with negligible societal impact, but rather constitute a wide spectrum of both rare and extremely common diseases responsible for an immense amount of suffering in all human societies. The characterization of the human genome will lead to the identification of genetic factors in many more human diseases, even those that now seem too multifactorial or polygenic for ready understanding. 2. To allow the development of powerful new approaches to diagnosis, detection, screening and even therapy of these disorders aimed directly at the mutant genes rather than at the gene products. This should eventually allow much more accurate and specific management of human genetic disease and the genetic factors in many human maladies. The preparation of a fine-structure physical map of the entire human genome together with an overlapping contiguous set of clones spanning entire chromosomes or large portions of chromosomes is rapidly becoming feasible, and the information that will flow from this effort promises eventually to affect the management of many important genetic diseases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
20.
The identification and analysis of novel genes and their encoded protein products remains a vigorous area of research in biology today. Worldwide genomic and cDNA sequencing projects are now identifying new molecules every day and the need for methodologies to functionally characterise these proteins has never been greater. The distinct compartmental arrangement of eukaryotic cells helps define the processes which occur within or in proximity to these membranes, and as such provides one means of inferring protein function. We describe here some of the methods recently reported in the literature, which use the subcellular localisation of proteins as a first step towards their further characterisation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号