首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The prevalence of thermophilic Campylobacter spp. was investigated in cattle on Washington State farms. A total of 350 thermophilic Campylobacter isolates were isolated from 686 cattle sampled on 15 farms (eight dairies, two calf rearer farms, two feedlots, and three beef cow-calf ranches). Isolate species were identified with a combination of phenotypic tests, hipO colony blot hybridization, and multiplex lpxA PCR. Breakpoint resistance to four antimicrobials (ciprofloxacin, nalidixic acid, erythromycin, and doxycycline) was determined by agar dilution. Campylobacter jejuni was the most frequent species isolated (34.1%), followed by Campylobacter coli (7.7%) and other thermophilic campylobacters (1.5%). The most frequently detected resistance was to doxycycline (42.3% of 350 isolates). Isolates from calf rearer facilities were more frequently doxycycline resistant than isolates from other farm types. C. jejuni was most frequently susceptible to all four of the antimicrobial drugs studied (58.8% of 272 isolates). C. coli isolates were more frequently resistant than C. jejuni, including resistance to quinolone antimicrobials (89.3% of isolates obtained from calves on calf rearer farms) and to erythromycin (72.2% of isolates obtained from feedlot cattle). Multiple drug resistance was more frequent in C. coli (51.5%) than in C. jejuni (5.1%). The results of this study demonstrate that C. jejuni is widely distributed among Washington cattle farms, while C. coli is more narrowly distributed but significantly more resistant.  相似文献   

2.
We previously reported that overexpression of the soxS or robA gene causes in several Escherichia coli strains the acquisition of higher organic solvent tolerance and also increased resistance to a number of antibiotics (H. Nakajima, K. Kobayashi, M. Kobayashi, H. Asako, and R. Aono, Appl. Environ. Microbiol. 61:2302-2307, 1995). Most E. coli strains cannot grow in the presence of cyclohexane. We isolated the marRAB genes from a Kohara lambda phage clone and cyclohexane-tolerant mutant strain OST3408. We found a substitution of serine for arginine at position 73 in the coding region of marR of OST3408 and designated the gene marR08. Our genetic analysis revealed that marR08 is responsible for the cyclohexane-tolerant phenotype. We observed that the marA gene on high-copy-number plasmids increased the organic solvent tolerance of E. coli strains. Furthermore, exposure of E. coli cells to salicylate, which activates the mar regulon genes, also raised organic solvent tolerance. Overexpression of the marA, soxS, or robA gene increased resistance to numerous antibiotics but not to hydrophilic aminoglycosides.  相似文献   

3.
Thermotolerant fecal indicator organisms carried by migratory waterfowl may serve as reservoirs of antibiotic resistance. To determine the extent to which such antibiotic resistance markers were present in migratory Canada geese (Branta canadensis) on the Maryland Eastern Shore, we isolated Enterococcus spp. and Escherichia coli from fresh feces and examined the antibiotic resistance profiles of these bacteria. Samples were obtained in October 2002, January 2003, and March 2003. Thermotolerant E. coli counts ranged from 0 to 1.0x10(7) colony forming units (CFU)/0.1g (g-1) wet weight of feces, whereas Enterococcus spp. counts ranged from 1.0x10(2)-1.0x10(7) CFU g-1 wet weight of feces. Primary isolates of each indicator organism were tested against a panel of 10 antibiotics. Greater than 95% of E. coli isolates were resistant to penicillin G, ampicillin, cephalothin, and sulfathiazole; no E. coli were resistant to ciprofloxacin. Enterococcal isolates showed highest resistance to cephalothin, streptomycin, and sulfathiazole; no enterococci were resistant to chloramphenicol. The tetracyclines, streptomycin, and gentamycin provided the greatest discrimination among E. coli isolates; chlortetracycline, cephalothin, and gentamycin resistance patterns provided the greatest discrimination between enterococcal strains. Multiple antibiotic resistance (MAR) profiles were calculated: fall (E. coli=0.499; enterococci=0.234), winter (E. coli=0.487; enterococci=0.389), and spring (E. coli=0.489; enterococci=0.348). E. faecalis and E. faecium, which are recognized human nosocomial pathogens, were cultured from winter (44 and 56%, respectively) and spring (13 and 31%, respectively) fecal samples.  相似文献   

4.
AIMS: To investigate the prevalence of quinolone resistance among Campylobacter jejuni and Camp. coli isolates from Danish poultry at the farm level, as well as for the whole country. METHODS AND RESULTS: Data and isolates were collected from a national surveillance of Campylobacter in poultry. Quinolone resistance was investigated by determination of minimum inhibitory concentration (MIC) to nalidixic acid and enrofloxacin. Among Camp. jejuni and Camp. coli combined, 7.5% were resistant to nalidixic acid. Quinolone resistance varied considerably from farm to farm, with 0% on some farms and almost 100% on others, but the resistance was evenly distributed geographically. With respect to isolates from farms where resistance was detected, quinolone resistance was higher among Camp. coli (28.7%) than among Camp. jejuni (11.3%). PFGE typing of quinolone-resistant and quinolone-susceptible isolates from four farms indicated that certain resistant isolates belonged to specific clones that were able to persist on the farms during several rotations, even in the absence of selective pressure. Some clones were present and repeatedly isolated in both a quinolone-susceptible and quinolone-resistant variant. CONCLUSIONS: Overall, quinolone resistance among Campylobacter isolates from Danish broilers was 7.5% in 1998 and 1999; it was higher among Camp. coli than Camp. jejuni. Genetic diversity among resistant isolates was lower than among susceptible isolates, and certain clones existed in both a resistant and a susceptible variant. Some resistant clones appeared to persist on the farms and were repeatedly isolated from poultry flocks. SIGNIFICANCE AND IMPACT OF THE STUDY: The study is important for the understanding of persistence and dynamics of Campylobacter in broiler houses. It also highlights the extent, farm-to-farm variation and persistence of quinolone-resistant Campylobacter in broiler houses.  相似文献   

5.
This study was performed to determine a sampling strategy to quantify the prevalence of antimicrobial resistance on veal calf farms, based on the variation in antimicrobial resistance within and between calves on five farms. Faecal samples from 50 healthy calves (10 calves/farm) were collected. From each individual sample and one pooled faecal sample per farm, 90 selected Escherichia coli isolates were tested for their resistance against 25 mg/L amoxicillin, 25 mg/L tetracycline, 0.5 mg/L cefotaxime, 0.125 mg/L ciprofloxacin and 8/152 mg/L trimethoprim/sulfamethoxazole (tmp/s) by replica plating. From each faecal sample another 10 selected E. coli isolates were tested for their resistance by broth microdilution as a reference. Logistic regression analysis was performed to compare the odds of testing an isolate resistant between both test methods (replica plating vs. broth microdilution) and to evaluate the effect of pooling faecal samples. Bootstrap analysis was used to investigate the precision of the estimated prevalence of resistance to each antimicrobial obtained by several simulated sampling strategies. Replica plating showed similar odds of E. coli isolates tested resistant compared to broth microdilution, except for ciprofloxacin (OR 0.29, p≤0.05). Pooled samples showed in general lower odds of an isolate being resistant compared to individual samples, although these differences were not significant. Bootstrap analysis showed that within each antimicrobial the various compositions of a pooled sample provided consistent estimates for the mean proportion of resistant isolates. Sampling strategies should be based on the variation in resistance among isolates within faecal samples and between faecal samples, which may vary by antimicrobial. In our study, the optimal sampling strategy from the perspective of precision of the estimated levels of resistance and practicality consists of a pooled faecal sample from 20 individual animals, of which 90 isolates are tested for their susceptibility by replica plating.  相似文献   

6.
Multiple antimicrobial resistance (MAR) in Salmonella choleraesuis is becoming a major concern. It has been demonstrated that a MAR phenotype can be induced in Escherichia coli and other members of the Enterobacteriaceae by exposing the isolates to salicylates, various antimicrobials, or organic solvents used to combat and control bacterial infection. Therefore the purpose of the present study was to determine whether this marA-associated MAR-phenotype is inducible in S. choleraesuis. Isolates used in the present study were able to withstand toxic effects of the organic solvent cyclohexane naturally, or following exposure to the inducing compounds salicylate, tetracycline, or chloramphenicol. All isolates possessed fragments of marA with the predicted size of 408 bp when amplified using marA-specific primers by PCR. The resulting PCR products that were sequenced revealed that amplified S. choleraesuis marA was 99% and 85% homologous to the published Salmonella typhimurium and E. coli marA sequences respectively. Minimum inhibitory concentrations of tetracycline (P<0.08), chloramphenicol (P<0.001), rifampin (P<0.08), and nalidixic acid (P<0.001) against cyclohexane-tolerant mutants were significantly increased when compared with wild-type S. choleraesuis. Northern hybridization signals for both marA and acrB were increased in the induced isolates when compared to uninduced controls while soxS expression did not change between induced and uninduced cultures. The results suggest that marA is present in S. choleraesuis and a MAR-phenotype is inducible in S. choleraesuis presumably due to the overexpression of marA and acrB and not to the overexpression of soxS.  相似文献   

7.
AIMS: The aim of this study was to assess geographical variation in multiple antibiotic resistance (MAR) profiles of livestock Escherichia coli as well as to evaluate the ability of MAR profiles to differentiate sources of faecal pollution. METHODS AND RESULTS: More than 2000 E. coli isolates were collected from water retention ponds and manure of swine, poultry, beef and dairy farms in south, central and north Florida, and analysed for MAR using nine antibiotics. There were significant differences in antibiotic resistance of E. coli by season and livestock type for more than one antibiotic, but regional differences were significant only for ampicillin. Over the three regions, discriminant analysis using MAR profiles correctly classified 27% of swine, 49% of poultry, 56% of beef and 51% of dairy isolates. CONCLUSIONS: Regional variations in MAR combined with moderate discrimination success suggest that MAR profiles of E. coli may only be marginally successful in identifying sources of faecal pollution. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrates the existence of regional and seasonal differences in MAR profiles as well as the limited ability of MAR profiles to discriminate among livestock sources.  相似文献   

8.
To assess the impacts of different types of human activity on the development of resistant bacteria in the feces of wild small mammals, we compared the prevalences and patterns of antimicrobial resistance and resistance genes in generic Escherichia coli and Salmonella enterica isolates from fecal samples collected from wild small mammals living in four environments: swine farms, residential areas, landfills, and natural habitats. Resistance to antimicrobials was observed in E. coli isolates from animals in all environments: 25/52 (48%) animals trapped at swine farms, 6/69 (9%) animals trapped in residential areas, 3/20 (15%) animals trapped at landfills, and 1/22 (5%) animals trapped in natural habitats. Animals trapped on farms were significantly more likely to carry E. coli isolates with resistance to tetracycline, ampicillin, sulfisoxazole, and streptomycin than animals trapped in residential areas. The resistance genes sul2, aadA, and tet(A) were significantly more likely to be detected in E. coli isolates from animals trapped on farms than from those trapped in residential areas. Three S. enterica serotypes (Give, Typhimurium, and Newport) were recovered from the feces of 4/302 (1%) wild small mammals. All Salmonella isolates were pansusceptible. Our results show that swine farm origin is significantly associated with the presence of resistant bacteria and resistance genes in wild small mammals in southern Ontario, Canada. However, resistant fecal bacteria were found in small mammals living in all environments studied, indicating that environmental exposure to antimicrobials, antimicrobial residues, resistant bacteria, or resistance genes is widespread.  相似文献   

9.
AIMS: This study examined 448 Campylobacter strains isolated in 1999 and 2000 from US feedlot cattle for resistance to 12 antimicrobials. METHODS AND RESULTS: Isolates were tested for antimicrobial susceptibility using the E-test method. Approximately 60% (n = 267) were resistant to one or more antimicrobials, and 19.6% (n = 88) were resistant to two or more antimicrobials. Of the Campylobacter jejuni isolates, 49.1% (n = 187) were resistant to tetracycline, 10.2% (n = 39) were resistant to nalidixic acid, 8.4% were resistant to trimethoprim/sulfamethoxazole, and 1.8% (n = 7) were resistant to ciprofloxacin. Resistance to any of the other eight antimicrobials was 1.3% or less, but 14.4% (n = 55) were resistant to two or more antimicrobials. In the Campylobacter coli group, 65.7% (n = 44) were resistant to tetracycline, 52.2% (n = 35) were resistant to trimethoprim/sulfamethoxazole, 22.4% (n = 15) were resistant to nalidixic acid, and 9.0% (n = 6) were resistant to ciprofloxacin. Resistance to any of the remaining eight antimicrobials was 3.0% or less, although 49.3% (n = 33) were resistant to two or more antimicrobials. CONCLUSIONS: Although antimicrobials are widely used in US feedlot cattle production, our results demonstrate generally low levels of resistance to a broad range of commonly used antimicrobials relative to other recent studies. SIGNIFICANCE AND IMPACT OF THE STUDY: Resistance data on Campylobacter isolated from this major US livestock commodity is lacking. This overview enhances current knowledge and provides a basis for further studies.  相似文献   

10.
AIMS: The purpose of this study was to determine the susceptibility of Campylobacter jejuni and Campylobacter coli isolates to antimicrobial agents and to investigate the presence of plasmid DNA. METHODS AND RESULTS: A total of 15 clinical isolates from children faeces, and 29 animal isolates of Campylobacter jejuni (n=22) and Campylobacter coli (n=22) were tested for susceptibility to 9 antimicrobial agents using a disc diffusion method, and screened for the presence of plasmid DNA by agarose gel electrophoresis. Of the 44 isolates, 56.8% were resistant to sulphonamide, 25% to norfloxacin, 18.2% to erythromicin, ciprofloxacin and ampicillin, and 13.6% to tetracycline. All isolates were susceptible to gentamicin, chloramphenicol and cefotaxime. Plasmids were detected in one Camp. jejuni (4.54%) strain isolated from sheep and in six (27.27%) Camp. coli strains isolated from rhesus monkey(3), swine(2), and poultry(1) with sizes ranging from 3.4 to 50 kb. CONCLUSIONS: The majority of the human isolates were susceptible to antibiotics commonly used for the treatment of campylobacteriosis. SIGNIFICANCE AND IMPACT OF THE STUDY: The origin and spread of Campylobacter resistance to antibiotics are discussed, with particular respect to the current situation in Brazil.  相似文献   

11.
The widespread agricultural use of antimicrobials has long been considered a crucial influence on the prevalence of resistant genes and bacterial strains. It has been suggested that antibiotic applications in agricultural settings are a driving force for the development of antimicrobial resistance, and epidemiologic evidence supports the view that there is a direct link between resistant human pathogens, retail produce, farm animals, and farm environments. Despite such concerns, little is understood about the population processes underlying the emergence and spread of antibiotic resistance and the reversibility of resistance when antibiotic selective pressure is removed. In this study, hierarchical log-linear modeling was used to assess the association between farm type (conventional versus organic), age of cattle (calf versus cow), bacterial phenotype (resistant versus susceptible), and the genetic composition of Escherichia coli populations (E. coli Reference Collection [ECOR] phylogroup A, B1, B2, or D) among 678 susceptible and resistant strains from a previously published study of 60 matched dairy farms (30 conventional and 30 organic) in Wisconsin. The analysis provides evidence for clonal resistance (ampicillin resistance) and genetic hitchhiking (tetracycline resistance [Tet(r)]), estimated the rate of compositional change from conventional farming to organic farming (mean, 8 years; range, 3 to 15 years), and discovered a significant association between low multidrug resistance, organic farms, and strains of the numerically dominant phylogroup B1. These data suggest that organic farming practices not only change the frequency of resistant strains but also impact the overall population genetic composition of the resident E. coli flora. In addition, the results support the hypothesis that the current prevalence of Tet(r) loci on dairy farms has little to do with the use of this antibiotic.  相似文献   

12.
AIMS: The aims of this study were to investigate the epidemiology of quinolone-resistant and -susceptible porcine isolates of Campylobacter coli and to characterize the genetic basis of quinolone resistance. METHODS AND RESULTS: Penner serotyping and flagellin gene sequence polymorphisms were used to investigate the epidemiology of the C. coli isolates. A total of 55 isolates were included, of which 30 were paired resistant and susceptible isolates from 15 pigs. Amplification of gyrA, gyrB and parC, followed by direct sequencing of amplicons was used to identify mutations in the targets of quinolones. Overall, 31 of the isolates were resistant to ciprofloxacin (minimum inhibitory concentrations (MIC), 2- >or = 32 microg x ml(-1)). Thirteen DdeI-flaA profiles were observed and resistant and susceptible strains were identified for nine profiles. The majority of resistant strains exhibited either profile 1 or 6. While profile 1 comprised susceptible and resistant strains, all of the strains with profile 6 were resistant to ciprofloxacin. The serogroup (O:24) of the profile 6 strains was identical. The only other serogroup to be uniformly associated with quinolone resistance was O:5. Strains with this phenotype comprised a number of genotypes, including profile 1. Only four of the paired isolates from individual pigs had the same profile. The genetic basis of quinolone resistance was investigated in two strains with ciprofloxacin MICs of 2 and > or = 32 miccrog x ml(-1), respectively. The amino acid substitution of isoleucine for threonine at position 86 was identified in the GyrA proteins from both strains. No mutations were identified in the GyrB proteins. CONCLUSIONS: There was an association between two of the genotypes, serotypes 5 and 24, and quinolone resistance. The association between genotype, serotype and resistance in C. coli isolates has not been reported previously. Only the mutation in GyrA associated with quinolone resistance was identified. No mutations in GyrB were identified. Amplification products of parC were not obtained and it may be that this gene is not present in some Campylobacter spp. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides data on the distribution of ciprofloxacin resistance between subtypes of C. coli.  相似文献   

13.
AIMS: To examine the prevalence and diversity of bacterial faecal pathogens in unseparated slurry, separated solids and liquid fractions from a commercial pig farm. METHODS: A total of 43 stored slurry specimens originating from a fattening house over the period February-April 2002 were analysed, consisting of unseparated (n = 14) slurry, separated solids (n = 16) and separated liquid (n = 13). Specimens were examined for the presence of five bacterial pathogens including Salmonella spp., Shigella spp., Campylobacter spp., Escherichia coli O157 and Yersinia enterocolitica. Selective enrichment and plating methods were employed for detection of Salmonella spp. and Campylobacter spp. and conventional selective plating techniques for the remaining genera. Antibiogram profiles to 12 antibiotic agents were obtained for all Salmonella isolates obtained. RESULTS: Salmonella spp. were identified in all components of the slurry specimens, whereas Campylobacter spp. was only recovered from the unseparated and separated liquid fractions. In both cases, the separated liquid fraction had the highest prevalence of pathogens and the separated solid fraction had the lowest prevalence. None of the slurry specimens examined were positive for E. coli O157:H7, Shigella spp. or Y. enterocolitica. Twenty-nine isolates of Salmonella were recovered from the slurry specimens, comprising seven serovars, of which Salmonella manhattan was the most prevalent, accounting for over half [15 of 29 (51.7%)] of all Salmonella isolates. Salmonella anatum, Salm. derby, Salm. give, Salm. heidelberg, Salm. simi and Salm. stanley serovars were also recovered. All Salmonella isolates were sensitive to ampicillin, augmentin (amoxicillin/clavulanic acid), chloramphenicol, ciprofloxacin, gentamicin, kanamycin and trimethoprim, but has variable resistance to tetracycline (100%), sulphonamides (84.6%), furazolidone (38.5%), nalidixic acid (15.4%) and streptomycin (15.4%). The majority (57.7%) of isolates displayed antibiotic resistance to at least two antibiotic agents, followed by 34.6% of isolates being resistant to three agents and the remainder (7.7%) being resistant to four antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY: This study demonstrated a marked reduction in the prevalence of Campylobacter and Salmonella in the solids component of separated pig slurry. The adoption of control processes such as aeration of slurry prior to its spread onto agricultural land and newer approaches to pathogen reduction should be investigated, to reduce the transmission of pathogens from pig slurry to the environment.  相似文献   

14.
In order to understand the role of the mar locus in Salmonella with regard to multiple antibiotic resistance, cyclohexane resistance, and outer membrane protein F (OmpF) regulation, a marA::gfp reporter mutant was constructed in an antibiotic-sensitive Salmonella enterica serovar Typhimurium DT104 background. Salicylate induced marA, whereas a number of antibiotics, disinfectants, and various growth conditions did not. Increased antibiotic resistance was observed upon salicylate induction, although this was shown to be by both mar-dependent and mar-independent pathways. Cyclohexane resistance, however, was induced by salicylate by a mar-dependent pathway. Complementation studies with a plasmid that constitutively expressed marA confirmed the involvement of mar in Salmonella with low-level antibiotic resistance and cyclohexane resistance, although the involvement of mar in down regulation of OmpF was unclear. However, marA overexpression did increase the expression of a ca. 50-kDa protein, but its identity remains to be elucidated. Passage of the marA::gfp reporter mutant with increasing levels of tetracycline, a method reported to select for mar mutants in Escherichia coli, led to both multiple-antibiotic and cyclohexane resistance. Collectively, these data indicate that low-level antibiotic resistance, cyclohexane resistance, and modulation of OMPs in Salmonella, as in E. coli, can occur in both a mar-dependent and mar-independent manner.  相似文献   

15.
Escherichia coli K-12 OST3410 was isolated previously as a stable cyclohexane-tolerant mutant derived from cyclohexane-sensitive strain JA300. A plasmid which provides cyclohexane tolerance to strain JA300 was isolated from the OST3410 genomic library. Subcloning and sequence analysis showed that the plasmid contained the robA gene, whose gene product was reported to bind specifically to the right border of oriC. We observed that the robA gene on the multicopy plasmid generally increased the organic solvent tolerance of several E. coli strains. We also observed an increase in the organic solvent tolerance of JA300 carrying the lac-robA fusion gene on a low-copy plasmid by isopropyl-beta-D-thiogalactopyranoside induction. Strain JA300 carrying the multicopy robA plasmid also showed an increase in resistance to a number of unrelated antibiotics and heavy metal ions, and the spectrum of resistance was significantly similar to that of the soxS-overexpressing strain.  相似文献   

16.
17.
Aims: To estimate the proportions of farms on which broilers, turkeys and pigs were shedding fluoroquinolone (FQ)-resistant Escherichia coli or Campylobacter spp. near to slaughter. Methods and Results: Freshly voided faeces were collected on 89 poultry and 108 pig farms and cultured with media containing 1·0 mg l−1 ciprofloxacin. Studies demonstrated the specificity of this sensitive method, and both poultry and pig sampling yielded FQ-resistant E. coli on 60% of farms. FQ-resistant Campylobacter spp. were found on around 22% of poultry and 75% of pig farms. The majority of resistant isolates of Campylobacter (89%) and E. coli (96%) tested had minimum inhibitory concentrations for ciprofloxacin of ≥8 mg l−1. The proportion of resistant E. coli and Campylobacter organisms within samples varied widely. Conclusions: FQ resistance is commonly present among two enteric bacterial genera prevalent on pig and poultry farms, although the low proportion of resistant organisms in many cases requires a sensitive detection technique. Significance and Impact of the Study: FQ-resistant bacteria with zoonotic potential appear to be present on a high proportion of UK pig and poultry farms. The risk this poses to consumers relative to other causes of FQ-resistant human infections remains to be clarified.  相似文献   

18.
Escherichia coli is a common commensal bacterium and is regarded as a good indicator organism for antimicrobial resistance for a wide range of bacteria in the community and on farms. Antimicrobial resistance of E. coli isolated from chickens from 49 farms in China between 2001 and 2006 was studied. A total of 536 E. coli isolates were collected, and minimal inhibitory concentrations (MICs) of eight antimicrobials were determined by the broth microdilution method. Isolates exhibited high levels of resistance to ampicillin (80.2%), doxycycline (75.0%) and enrofloxacin (67.5%). Relatively lower resistance rates to cephalothin (32.8%), cefazolin (17.0%) and amikacin (6.5%) were observed. Strains were comparatively susceptible to colistin (MIC(50)=1 mug mL(-1)). A marked increase in isolates with elevated MICs for florfenicol was observed over the study period. Therefore, five resistance genes leading to the dissemination of phenicol resistance in the isolates (n=113) with florfenicol MICs>/=32 mug mL(-1) were analyzed. The gene floR was the most prevalent resistance gene and was detected in 92% of the 113 isolates, followed by the cmlA (53%), catA1 (23%) and catA2 (10%) genes. catA3 was not detected in these isolates. Eight isolates with florfenicol MICs=32 mug mL(-1) and one with MIC=64 mug mL(-1) were negative for the floR gene.  相似文献   

19.
A total of 1572 isolates of Escherichia coli obtained from the faeces of young farm animals with diarrhoea over the period 1980–1983 were screened for resistance to trimethoprim (Tp). Resistance to Tp was detected in263/954 (28%) of bovine isolates,59/441 (13%) of porcine isolates and15/177 (9%) of ovine isolates. Seventy-five resistant isolates from separate outbreaks of infection on farms within a 25 mile radius of Nottingham were examined in detail. Sixty-eight (91%) of the 75 isolates were resistant to > 1024 mg Tp/1 and 34 (50%) of these 'highly resistant' isolates (45% of total resistant isolates) transferred their Tp resistance to E. coli K12. A further 13 (17%) isolates were demonstrated to carry non-self-transferable plasmids which were capable of being mobilized to E. coli K12 by the broad host range plasmid RP4. Thirty-one self-transferable Tp R plasmids were divided between the following incompatibility groups: IncB (14 plasmids), IncF***H (4 plasmids), IncH2 (1 plasmid), IncIaP (10 plasmids), IncIdT (1 plasmid) and IncP (1 plasmid). In terms of antibiotic resistance patterns and incompatibility properties, many of these plasmids closely resembled those isolated from human patients in the same area, suggesting that there may be a common pool of Tp R plasmids.  相似文献   

20.
AIMS: To examine the variability in faecal shedding of Salmonella and Escherichia coli O157:H7 in healthy lactating dairy cattle and to evaluate the genetic relatedness of Salmonella isolates. METHODS: Faecal samples were obtained from lactating Holstein dairy cattle on four commercial farms in the southwestern US. All farms were within an 8-km radius and were sampled in August 2001, January 2002 and August 2002 (60 cows per farm per sampling; n = 720 total samples). Samples were cultured for E. coli O157:H7 and Salmonella and a portion of the recovered Salmonella isolates were examined for genetic relatedness using pulsed-field gel electrophoresis (PFGE). RESULTS: Faecal shedding of E. coli O157:H7 and Salmonella varied considerably between farms and at the different sampling times. Large fluctuations in the percentage of positive animals were observed from summer to summer for both of these pathogens. Similarly, Salmonella serotype and serotype prevalence varied from farm to farm and within farm from one sampling time to another. Multiple Salmonella genotypes were detected for a number of serotypes and identical genotypes were found on different farms with one genotype of Salmonella Senftenberg identified on three of the four farms. Significance and Impact of the STUDY: This study demonstrated the wide variability in pathogen shedding within and among dairy farms all located in a small geographical region and highlights the complexity of pathogen control at the farm level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号