首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The localisation of insulin receptors (IR) was investigated on cryosections of human non-pathologic first trimester and full term placentae by indirect immunohistochemistry with three different monoclonal antibodies (MABS). In placentae from 6 to 10 weeks post-menstruation (p-m.), only syncytiotrophoblast was stained, predominantly that of mesenchymal villi and syncytial sprouts, which are areas of high proliferative activity. In placentae from 11 to 14 weeks p-m., endothelial cells commenced to react with the IR MABS and the syncytiotrophoblast was less intensely labelled than at weeks 6 to 10 p-m. In term placentae, the microvillous membrane of the syncytiotrophoblast showed only patches of weak immunoreactivity. In contrast, the endothelial cells in the placenta but not in the umbilical cord were strongly stained. The amniotic epithelium in the chorionic plate and fibroblasts in the stroma were conspicuously labelled. The data indicate: (1) the receptor density on villous syncytiotrophoblast decreases and that of fetal endothelium increases throughout gestation; (2) syncytiotrophoblast of human term placentae expresses a low level per unit area of surface IR; and (3) the majority of IR in human term placentae is located in fetal endothelium. Apart from yet unknown functional effects of maternal and fetal insulin at the placental barrier, the results suggest a growth promoting effect on the trophoblast of maternal insulin in first trimester as well as developmental effects of fetal insulin on the feto-placental vessels at term.  相似文献   

2.
Our previous studies have demonstrated that a large quantity of oxytocin (OT)-like substance exists in human placental tissue. In the present study, the localization of the OT-like substance in the human placenta was investigated by the PAP (peroxidase and antiperoxidase complex) immunohistochemical method. The results demonstrated that the site of syncytiotrophoblast was positively stained by specific antiserum to OT, whereas the tissue was not significantly stained by normal rabbit serum (NRS). These results suggest that the OT-like substance might be localized in syncytiotrophoblast of the placental tissue.  相似文献   

3.
4.
The co-operative nature of the binding of the Escherichia coli single strand binding protein (SSB) to single-stranded nucleic acids has been examined over a range of salt concentrations (NaCl and MgCl2) to determine if different degrees of binding co-operativity are associated with the two SSB binding modes that have been identified recently. Quantitative estimates of the binding properties, including the co-operativity parameter, omega, of SSB to single-stranded DNA and RNA homopolynucleotides have been obtained from equilibrium binding isotherms, at high salt (greater than or equal to 0.2 M-NaCl), by monitoring the fluorescence quenching of the SSB upon binding. Under these high salt conditions, where only the high site size SSB binding mode exists (65 +/- 5 nucleotides per tetramer), we find only moderate co-operativity for SSB binding to both DNA and RNA, (omega = 50 +/- 10), independent of the concentration of salt. This value for omega is much lower than most previous estimates. At lower concentrations of NaCl, where the low site size SSB binding mode (33 +/- 3 nucleotides/tetramer) exists, but where SSB affinity for single-stranded DNA is too high to estimate co-operativity from classical binding isotherms, we have used an agarose gel electrophoresis technique to qualitatively examine SSB co-operativity with single-stranded (ss) M13 phage DNA. The apparent binding co-operativity increases dramatically below 0.20 M-NaCl, as judged by the extremely non-random distribution of SSB among the ssM13 DNA population at low SSB to DNA ratios. However, the highly co-operative complexes are not at equilibrium at low SSB/DNA binding densities, but are formed only transiently when SSB and ssDNA are directly mixed at low concentrations of NaCl. The conversions of these metastable, highly co-operative SSB-ssDNA complexes to their equilibrium, low co-operativity form is very slow at low concentrations of NaCl. At equilibrium, the SSB-ssDNA complexes seem to possess the same low degree of co-operativity (omega = 50 +/- 10) under all conditions tested. However, the highly co-operative mode of SSB binding, although metastable, may be important during non-equilibrium processes such as DNA replication. The possible relation between the two SSB binding modes, which differ in site size by a factor of two, and the high and low co-operativity complexes, which we report here, is discussed.  相似文献   

5.
S W Morrical  J Lee  M M Cox 《Biochemistry》1986,25(7):1482-1494
The single-stranded DNA binding protein of Escherichia coli (SSB) stimulates recA protein promoted DNA strand exchange reactions by promoting and stabilizing the interaction between recA protein and single-stranded DNA (ssDNA). Utilizing the intrinsic tryptophan fluorescence of SSB, an ATP-dependent interaction has been detected between SSB and recA-ssDNA complexes. This interaction is continuous for periods exceeding 1 h under conditions that are optimal for DNA strand exchange. Our data suggest that this interaction does not involve significant displacement of recA protein in the complex by SSB when ATP is present. The properties of this interaction are consistent with the properties of SSB-stabilized recA-ssDNA complexes determined by other methods. The data are incompatible with models in which SSB is displaced after functioning transiently in the formation of recA-ssDNA complexes. A continuous association of SSB with recA-ssDNA complexes may therefore be an important feature of the mechanism by which SSB stimulates recA protein promoted reactions.  相似文献   

6.
The ATP-dependent three-strand exchange activity of the Streptococcus pneumoniae RecA protein (RecA(Sp)), like that of the Escherichia coli RecA protein (RecA(Ec)), is strongly stimulated by the single-stranded DNA-binding protein (SSB) from either E. coli (SSB(Ec)) or S. pneumoniae (SSB(Sp)). The RecA(Sp) protein differs from the RecA(Ec) protein, however, in that its ssDNA-dependent ATP hydrolysis activity is completely inhibited by SSB(Ec) or SSB(Sp) protein, apparently because these proteins displace RecA(Sp) protein from ssDNA. These results indicate that in contrast to the mechanism that has been established for the RecA(Ec) protein, SSB protein does not stimulate the RecA(Sp) protein-promoted strand exchange reaction by facilitating the formation of a presynaptic complex between the RecA(Sp) protein and the ssDNA substrate. In addition to acting presynaptically, however, it has been proposed that SSB(Ec) protein also stimulates the RecA(Ec) protein strand exchange reaction postsynaptically, by binding to the displaced single strand that is generated when the ssDNA substrate invades the homologous linear dsDNA. In the RecA(Sp) protein-promoted reaction, the stimulatory effect of SSB protein may be due entirely to this postsynaptic mechanism. The competing displacement of RecA(Sp) protein from the ssDNA substrate by SSB protein, however, appears to limit the efficiency of the strand exchange reaction (especially at high SSB protein concentrations or when SSB protein is added to the ssDNA before RecA(Sp) protein) relative to that observed under the same conditions with the RecA(Ec) protein.  相似文献   

7.
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.  相似文献   

8.
Summary Rabbit peroxidase-antiperoxidase complex (PAP) has been shown to bind to IgG receptors on the human placental syncytiotrophoblast microvillar membrane. Its binding characteristics suggest that it is suitable as a probe for studies on the uptake of IgG by the human placenta.A novel assay system was developed to measure the dissociation constants (K d) of the binding of PAP and of unlabelled human IgG to purified placental microvillar membranes. TheK d for PAP was found to be 54 nM, while that for unlabelled IgG was found to be 17.5 nM.The uptake of PAP by placental tissue slices was observed using peroxidase histochemistry and electron microscopy. In initial experiments, reaction product was confined to the peripheral regions of the syncytiotrophoblast. Assaying a placental homogenate for catalase activity showed that it contained 250 units of activity per g wet weight of tissue (compared with 680 units/g for rat liver). Treatment of fixed tissue with the catalase inhibitor 3-amino-1, 2, 4-triazole allowed the localization of peroxidase reaction product in deeper regions of the syncytiotrophoblast. Based on observations of the localization of reaction product, we propose that PAP is taken up in coated pits, transferred into large apical multivesicular bodies, segregated into small vesicles which then transport it to the Golgi. From here the PAP is directed to the basal membrane by a mechanism as yet unknown.  相似文献   

9.
Displacement of single-stranded DNA (ssDNA)-binding protein (SSB) from ssDNA is necessary for filament formation of RecA on ssDNA to initiate homologous recombination. The interaction between RecO and SSB is considered to be important for SSB displacement; however, the interaction has not been characterized at the atomic level. In this study, to clarify the mechanism underlying SSB displacement from ssDNA upon RecO binding, we examined the interaction between Thermus thermophilus RecO and cognate SSB by NMR analysis. We found that SSB interacts with the C-terminal positively charged region of RecO. Based on this result, we constructed some RecO mutants. The R127A mutant had considerably decreased binding affinity for SSB and could not anneal SSB-coated ssDNAs. Further, the mutant in the RecOR complex prevented the recovery of ssDNA-dependent ATPase activity of RecA from inhibition by SSB. These results indicated that the region surrounding Arg-127 is the binding site of SSB. We also performed NMR analysis using the C-terminal peptide of SSB and found that the acidic region of SSB is involved in the interaction with RecO, as seen in other protein-SSB interactions. Taken together with the findings of previous studies, we propose a model for SSB displacement from ssDNA where the acidic C-terminal region of SSB weakens the ssDNA binding affinity of SSB when the dynamics of the C-terminal region are suppressed by interactions with other proteins, including RecO.  相似文献   

10.
When duplex DNA is altered in almost any way (replicated, recombined, or repaired), single strands of DNA are usually intermediates, and single-stranded DNA binding (SSB) proteins are present. These proteins have often been described as inert, protective DNA coatings. Continuing research is demonstrating a far more complex role of SSB that includes the organization and/or mobilization of all aspects of DNA metabolism. Escherichia coli SSB is now known to interact with at least 14 other proteins that include key components of the elaborate systems involved in every aspect of DNA metabolism. Most, if not all, of these interactions are mediated by the amphipathic C-terminus of SSB. In this review, we summarize the extent of the eubacterial SSB interaction network, describe the energetics of interactions with SSB, and highlight the roles of SSB in the process of recombination. Similar themes to those highlighted in this review are evident in all biological systems.

  相似文献   

11.
目的:制备人绒毛膜促性腺激素(beta-HCG)单克隆抗体,建立人beta-HCG双抗体夹心CLIA 检测方法。方法:用人beta-HCG 抗原 免疫小鼠,通过细胞融合、筛选后得到杂交瘤细胞株,然后将细胞株扩大培养并纯化上清液获得抗体,测定抗体亲和力、特异性及 表位,最后建立双抗体夹心CLIA方法。结果:获得4 株抗人茁-HCG的杂交瘤细胞株(beta-1-1、beta-2-1、beta-3-1、beta-4-1)。用beta-1-1 和 beta-2-1 建立的双抗体夹心法的检测范围为0.5 mIU/mL-800 mIU/mL,灵敏度0.23 mIU/mL,检测结果的相对偏差均在± 10 %内,回 收率在90 %以上。结论:本研究最终成功制备了抗人beta-HCG mAb,建立了定量检测人beta-HCG 的双抗体夹心CLIA 方法,为 beta-HCG 检测及疾病的诊断奠定基础。  相似文献   

12.
14C incorporation into water soluble (WS) and insoluble (IS) liver fractions was studied in vitro by incubation of rat liver slices with [1-14C]oleoyl (OL)-, [1-14C]linoleoyl (LI)-, and [1-14C]arachidonoyl (AR)-CoAs. Livers (200–300 mg) from 6-day-old rats were cut into pieces and incubated for 1 h at 37°C in 4 ml Eagle's amino acid basal medium, supplemented with fetal calf serum. OL, LI, and AR were added to the medium at a concentration of 0.10–0.15 mm (1.2–1.8 μCi per flask), except in one experiment where the molar concentration was higher (0.58 mm) and the radioactivity more dilute (0.7 μCi per flask). Two groups of liver slices were incubated in serum-free Eagle's amino acid basal medium alone. After incubation and repeated washings, liver slices were extracted using a chloroform-methanol-water system which separated into three layers: an upper-phase WS containing water-methanol soluble compounds, a lower-phase FL containing substances freely soluble in the solvents, and an intermediary fluff (IS phase) of insoluble macromolecules. The WS, IS, and FL phases were washed until no further radioactivity could be removed. Distribution of radioactivity among the three WS, IS, and FL phases was determined in relation to the radioactive precursor used and the different compositions of the nutritional media. Radioactivity measurements indicated: (1) Incorporation of 14C from OL (oleoyl-CoA) into liver slices was much higher than that from free oleic acid; (2) incorporation of 14C into WS and IS phases was higher from LI than from OL and from AR when the acyl-CoA concentration did not exceed 0.15 mm (1.2–1.8 μCi per flask); (3) incorporation of 14C into polar phases was highly dependent on the presence of fetal calf serum (FCS), and the total 14C uptake into liver slices was, for example, much higher for AR when FCS was omitted from the medium; (4) thin-layer chromatography separation of lipid compounds bound to WS and IS proteins released by hydrolysis indicates differences in the distribution of the radioactivity among the (OL, LI, and AR) groups. The technique can possibly be extended to other studies concerning synthesis of lipids and coenzymes covalently bound to multienzyme complexes.  相似文献   

13.
Human single-stranded DNA binding protein (human SSB) is a multisubunit protein containing polypeptides of 70, 34, and 11 kDa that is required for SV40 DNA replication in vitro. In this report we identify the functions of the SSB and its individual subunits in SV40 DNA replication. The 70 kDa subunit was found to bind to single-stranded DNA, whereas the other subunits did not. Four monoclonal antibodies against human SSB were isolated which inhibited SV40 DNA replication in vitro. The antibodies have been designated alpha SSB70A, alpha SSB70B, alpha SSB70C, and alpha SSB34A to indicate which subunits are recognized. Immunolocalization experiments indicated that human SSB is a nuclear protein. Human SSB is required for the SV40 large tumor antigen-catalyzed unwinding of SV40 DNA and stimulates DNA polymerases (pol) alpha and delta. The DNA unwinding reaction and stimulation of pol delta were blocked by alpha SSB70C, whereas the stimulation of pol alpha by human SSB was unaffected by this antibody. Conversely, alpha SSB70A, -70B, and -34A inhibited the stimulation of pol alpha, but they had no effect on DNA unwinding and pol delta stimulation. None of the antibodies inhibited the binding of SSB to single-stranded DNA. These results suggest that DNA unwinding and stimulation of pol alpha and pol delta are required functions of human SSB in SV40 DNA replication. The human SSB 70-kDa subunit appears to be required for DNA unwinding and pol delta stimulation, whereas both the 70- and 34-kDa subunits may be involved in the stimulation of pol alpha.  相似文献   

14.
C Urbanke  A Schaper 《Biochemistry》1990,29(7):1744-1749
The time course of the reaction of Escherichia coli single-stranded DNA binding protein (E. coli SSB) with poly(dT) and M13mp8 single-stranded DNA has been measured by fluorescence stopped-flow experiments. For poly(dT), the fluorescence traces follow simple bimolecular behavior up to 80% saturation of the polymer with E. coli SSB. A mechanistic explanation of this binding behavior can be given as follows: (1) E. coli SSB is able to translocate very rapidly on the polymer, forming cooperative clusters. (2) In the rate-limiting step of the association reaction, E. coli SSB is bound to the polymer only by one or two of its four contact sites. As compared to poly(dT), association to single-stranded M13mp8 phage DNA is slower by at least 2 orders of magnitude. We attribute this finding to the presence of secondary structure elements (double-stranded structures) in the natural single-stranded DNA. These structures cannot be broken by E. coli SSB in a fast reaction. In order to fulfill its physiological function in reasonable time, E. coli SSB must bind newly formed single-stranded DNA immediately. The protein can, however, bind to such pieces of the newly formed single-stranded DNA which are too short to cover all four binding sites of the E. coli SSB tetramer.  相似文献   

15.
Electrophoretic elution of proteins from polyacrylamide gel slices   总被引:3,自引:0,他引:3  
A method for electrophoretic elution of proteins from polyacrylamide gel slices is described. Eluted proteins were retained by a discontinuous conductivity gradient (M. Otto and M. Snejdárková, Anal. Biochem. 111, 111-114 (1981)). The method has been adapted to slices from slab gels and gels that have been stained and destained. Proteins were eluted as their sodium dodecyl sulfate complexes. Minute amounts of proteins (0.1 microgram) were recovered in high yield (85-95%) in 2 h in less than 0.1 ml volume.  相似文献   

16.
We compared the biochemical properties of the RecA441 protein to those of the wild-type RecA protein in an effort to account for the constitutive protease activity observed in recA441 strains. The two RecA proteins have similar properties in the absence of single-stranded DNA binding protein (SSB protein), and the differences that do exist shed little light on the temperature-inducible phenotype observed in recA441 strains. In contrast, several biochemical differences are apparent when the two proteins are compared in the presence of SSB protein, and these are conducive to a hypothesis that explains the temperature-sensitive behavior observed in these strains. We find that both the single-stranded DNA (ssDNA)-dependent ATPase and LexA-protease activities of RecA441 protein are more resistant to inhibition by SSB protein than are the activities of the wild-type protein. Additionally, the RecA441 protein is more capable of using ssDNA that has been precoated with SSB protein as a substrate for ATPase and protease activities, implying that RecA441 protein is more proficient at displacing SSB protein from ssDNA. The enhanced SSB protein displacement ability of the RecA441 protein is dependent on elevated temperature. These observations are consistent with the hypothesis that the RecA441 protein competes more efficiently with SSB protein for limited ssDNA sites and can be activated to cleave repressors at elevated temperature by displacing SSB protein from the limited ssDNA that occurs naturally in Escherichia coli. Neither the ssDNA binding characteristics of the RecA441 protein nor the rate at which it transfers from one DNA molecule to another provides an explanation for its enhanced activities, leading us to conclude that kinetics of RecA441 protein association with DNA may be responsible for the properties of the RecA441 protein.  相似文献   

17.
The biochemical properties of the recA430 protein have been examined and compared to those of wild-type recA protein. We find that, while the recA430 protein possesses ssDNA-dependent rATP activity, this activity is inhibited by the Escherichia coli single-stranded DNA binding protein (SSB protein) under many conditions that enhance wild-type recA protein rATPase hydrolysis. Stimulation of rATPase activity by SSB protein is observed only at high concentrations of both rATP (greater than 1 mM) and recA430 protein (greater than 5 microM). In contrast, stimulation of ssDNA-dependent dATPase activity by SSB protein is less sensitive to protein and nucleotide concentration. Consistent with the nucleotide hydrolysis data, recA430 protein can carry out DNA strand exchange in the presence of either rATP or dATP. However, in the presence of rATP, both the rate and the extent of DNA strand exchange by recA430 protein are greatly reduced compared to wild-type recA protein and are sensitive to recA430 protein concentration. This reduction is presumably due to the inability of recA430 protein to compete with SSB protein for ssDNA binding sites under these conditions. The cleavage of lexA repressor protein by recA430 protein is also sensitive to the nucleotide cofactor present and is completely inhibited by SSB protein when rATP is the cofactor but not when dATP is used. Finally, the steady-state affinity and the rate of association of the recA430 protein-ssDNA complex are reduced, suggesting that the mutation affects the interaction of the ATP-bound form of recA protein with ssDNA. This alteration is the likely molecular defect responsible for inhibition of recA430 protein rATP-dependent function by SSB protein. The biochemical properties observed in the presence of dATP and SSB protein, i.e. the reduced levels of both DNA strand exchange activity and cleavage of lexA repressor protein, are consistent with the phenotypic behavior of recA430 mutations.  相似文献   

18.
The influence of Escherichia coli single-strand binding (SSB) protein on the conformation and internal dynamics of pBR322 and pUC8 supercoiled DNAs has been investigated by using dynamic light scattering at 632.8 and 351.1 nm and time-resolved fluorescence polarization anisotropy of intercalated ethidium. SSB protein binds to both DNAs up to a stoichiometry that is sufficient to almost completely relax the superhelical turns. Upon saturation binding, the translational diffusion coefficients (D0) of both DNAs decrease by approximately 20%. Apparent diffusion coefficients (Dapp) obtained from dynamic light scattering display the well-known increase with K2 (K = scattering vector), leveling off toward a plateau value (Dplat) at high K2. For both DNAs, the difference Dplat - D0 increases upon relaxation of supercoils by SSB protein, which indicates a corresponding enhancement of the subunit mobilities in internal motions. Fluorescence polarization anisotropy measurements on free and complexed pBR322 DNA indicate a (predominantly) uniform torsional rigidity for the saturated DNA/SSB protein complex that is significantly reduced compared to the free DNA. These observations are all consistent with the notion that binding of SSB protein is accompanied by a gradual loss of supercoils and saturates when the superhelical twist is largely removed.  相似文献   

19.
DNA single-strand breaks (SSB) formation coordinates the myogenic program, and defects in SSB repair in post-mitotic cells have been associated with human diseases. However, the DNA damage response by SSB in terminally differentiated cells has not been explored yet. Here we show that mouse post-mitotic muscle cells accumulate SSB after alkylation damage, but they are extraordinarily resistant to the killing effects of a variety of SSB-inducers. We demonstrate that, upon SSB induction, phosphorylation of H2AX occurs in myotubes and is largely ataxia telangiectasia mutated (ATM)-dependent. However, the DNA damage signaling cascade downstream of ATM is defective as shown by lack of p53 increase and phosphorylation at serine 18 (human serine 15). The stabilization of p53 by nutlin-3 was ineffective in activating the cell death pathway, indicating that the resistance to SSB inducers is due to defective p53 downstream signaling. The induction of specific types of damage is required to activate the cell death program in myotubes. Besides the topoisomerase inhibitor doxorubicin known for its cardiotoxicity, we show that the mitochondria-specific inhibitor menadione is able to activate p53 and to kill effectively myotubes. Cell killing is p53-dependent as demonstrated by full protection of myotubes lacking p53, but there is a restriction of p53-activated genes. This new information may have important therapeutic implications in the prevention of muscle cell toxicity.  相似文献   

20.
Intrinsically disordered regions (IDRs) of proteins often regulate function through interactions with folded domains. Escherichia coli single-stranded DNA binding protein SSB binds and stabilizes single-stranded DNA (ssDNA). The N-terminal of SSB contains characteristic OB (oligonucleotide/oligosaccharide-binding) fold which binds ssDNA tightly but non-specifically. SSB also forms complexes with a large number proteins via the C-terminal interaction domain consisting mostly of acidic amino acid residues. The amino acid residues located between the OB-fold and C-terminal acidic domain are known to constitute an IDR and no functional significance has been attributed to this region. Although SSB is known to bind many DNA repair protein, it is not known whether it binds to DNA dealkylation repair protein AlkB. Here, we characterize AlkB SSB interaction and demonstrate that SSB binds to AlkB via the IDR. We have established that AlkB-SSB interaction by in vitro pull-down and yeast two-hybrid analysis. We mapped the site of contact to be the residues 152–169 of SSB. Unlike most of the SSB-binding proteins which utilize C-terminal acidic domain for interaction, IDR of SSB is necessary and sufficient for AlkB interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号