首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the last decade, fundamental advances in whole cell based sensors and microsystems have established the extracellular acidification rate monitoring of cell cultures as an important indicator of the global cellular metabolism. Innovative approaches adopting advanced integrated sensor array-based microsystems represent an emerging technique with numerous biomedical applications. This paper reports a cell-based microsystem, for multisite monitoring of the physiological state of cell populations. The functional components of the microsystem are an ion sensitive field effect transistor (ISFET) array-based sensor chip and a CMOS integrated circuit for signal conditioning and sensor signal multiplexing. In order to validate the microsystem capabilities for in-vitro toxicity screening applications, preliminary experimental measurements with Cheratinocytes, and CHO cells are presented. Variations in the acidification rate, imputable to the inhibitory effect of the drug on the metabolic cell activity have been monitored and cell viability during long term measurements has been also demonstrated.  相似文献   

2.
Passive and label-free isolation of viable target cells based on intrinsic biophysical cellular properties would allow for cost savings in applications where molecular biomarkers are known as well as potentially enable the separation of cells with little-to-no known molecular biomarkers. We have demonstrated the purification of adrenal cortical progenitor cells from digestions of murine adrenal glands utilizing hydrodynamic inertial lift forces that single cells and multicellular clusters differentially experience as they flow through a microchannel. Fluorescence staining, along with gene expression measurements, confirmed that populations of cells collected in different outlets were distinct from one another. Furthermore, primary murine cells processed through the device remained highly viable and could be cultured for 10 days in vitro. The proposed target cell isolation technique can provide a practical means to collect significant quantities of viable intact cells required to translate stem cell biology to regenerative medicine in a simple label-free manner.  相似文献   

3.
Inorganic phosphate (Pi) has central roles in metabolism, cell signaling and energy conversion. The distribution of Pi to each cell and cellular compartment of an animal must be tightly coordinated with its dietary supply and with the varied metabolic demands of individual cells. An analytical method for monitoring Pi dynamics with spatial and temporal resolution is therefore needed to gain a comprehensive understanding of mechanisms governing the transport and recycling of this essential nutrient. Here we demonstrate the utility of a genetically encoded FRET-based Pi sensor to assess cellular Pi levels in the nematode Caenorhabditis elegans. The sensor was expressed in different cells and tissues of the animal, including head neurons, tail neurons, pharyngeal muscle, and the intestine. Cytosolic Pi concentrations were monitored using ratiometric imaging. Injection of phosphate buffer into intestinal cells confirmed that the sensor was responsive to changes in Pi concentration in vivo. Live Pi imaging revealed cell-specific and developmental stage-specific differences in cytosolic Pi concentrations. In addition, cellular Pi levels were perturbed by food deprivation and by exposure to the respiratory inhibitor cyanide. These results suggest that Pi concentration is a sensitive indicator of metabolic status. Moreover, we propose that live Pi imaging in C. elegans is a powerful approach to discern mechanisms that govern Pi distribution in individual cells and throughout an animal.  相似文献   

4.
Over the past decade, we have learned that cellular processes, including signalling and metabolism, are highly compartmentalized, and that relevant changes in metabolic state can occur at sub-second timescales. Moreover, we have learned that individual cells in populations, or as part of a tissue, exist in different states. If we want to understand metabolic processes and signalling better, it will be necessary to measure biochemical and biophysical responses of individual cells with high temporal and spatial resolution. Fluorescence imaging has revolutionized all aspects of biology since it has the potential to provide information on the cellular and subcellular distribution of ions and metabolites with sub-second time resolution. In the present review we summarize recent progress in quantifying ions and metabolites in populations of yeast cells as well as in individual yeast cells with the help of quantitative fluorescent indicators, namely FRET metabolite sensors. We discuss the opportunities and potential pitfalls and the controls that help preclude misinterpretation.  相似文献   

5.
In this paper, impedance measurement of electrolyte-insulator-semiconductor (EIS) structure with high spatial resolution was proposed to monitor cell adhesion. The light addressing ability of this work overcomes the geometrical restrict of cell culture on conventional impedance detection devices such as interdigitated electrode (IDE) and electric cell-substrate impedance sensing (ECIS). Instead of studying cells on predetermined sites of IDE and ECIS, cells cultured anywhere on EIS sensor surface can be addressed and selected as target cells. Principle and primary models for high resolution impedance detection were described and tested by experiments. The EIS sensor was investigated in terms of its intrinsic characteristics, like impedance behavior, voltage characteristic, frequency dependency and photovoltaic effect. Optimized working condition was studied for cell experiments. Cell adhesion under treatment of 0.1% Triton X-100 was monitored using rat kidney cells as the source. Results showed good sensitivity (10% change of impedance) and resolution (40 μm) for cell adhesion impedance detection and suggested this work should be suitable for monitoring cell impedance. Further improvements on sensitivity, spatial resolution were discussed as well as the further applications for single cell monitoring and cell adhesion imaging.  相似文献   

6.
7.
8.
Genome-scale metabolic models describe cellular metabolism with mechanistic detail. Given their high complexity, such models need to be parameterized correctly to yield accurate predictions and avoid overfitting. Effective parameterization has been well-studied for microbial models, but it remains unclear for higher eukaryotes, including mammalian cells. To address this, we enumerated model parameters that describe key features of cultured mammalian cells – including cellular composition, bioprocess performance metrics, mammalian-specific pathways, and biological assumptions behind model formulation approaches. We tested these parameters by building thousands of metabolic models and evaluating their ability to predict the growth rates of a panel of phenotypically diverse Chinese Hamster Ovary cell clones. We found the following considerations to be most critical for accurate parameterization: (1) cells limit metabolic activity to maintain homeostasis, (2) cell morphology and viability change dynamically during a growth curve, and (3) cellular biomass has a particular macromolecular composition. Depending on parameterization, models predicted different metabolic phenotypes, including contrasting mechanisms of nutrient utilization and energy generation, leading to varying accuracies of growth rate predictions. Notably, accurate parameter values broadly agreed with experimental measurements. These insights will guide future investigations of mammalian metabolism.  相似文献   

9.
The ability of injured cells to heal is a fundamental cellular process, but cellular and molecular mechanisms involved in healing injured cells are poorly understood. Here assays are described to monitor the ability and kinetics of healing of cultured cells following localized injury. The first protocol describes an end point based approach to simultaneously assess cell membrane repair ability of hundreds of cells. The second protocol describes a real time imaging approach to monitor the kinetics of cell membrane repair in individual cells following localized injury with a pulsed laser. As healing injured cells involves trafficking of specific proteins and subcellular compartments to the site of injury, the third protocol describes the use of above end point based approach to assess one such trafficking event (lysosomal exocytosis) in hundreds of cells injured simultaneously and the last protocol describes the use of pulsed laser injury together with TIRF microscopy to monitor the dynamics of individual subcellular compartments in injured cells at high spatial and temporal resolution. While the protocols here describe the use of these approaches to study the link between cell membrane repair and lysosomal exocytosis in cultured muscle cells, they can be applied as such for any other adherent cultured cell and subcellular compartment of choice.  相似文献   

10.
B Jaggi  S S Poon  C MacAulay  B Palcic 《Cytometry》1988,9(6):566-572
An image acquisition and processing system has been developed for quantitative microscopy of absorption or fluorescence in stained cells. Three different light transducers are used in the system to exploit the best characteristics of these sensors for different biological measurements. A digital scanner, in the form of a linear array charge-coupled device (CCD), acquires data with high spatial and photometric resolution. A color (RGB) camera is employed when spectral information is required for the segmentation of cellular subcomponents. An image-intensified charged-injection device (CID) camera provides for very low light intensity measurements, primarily for fluorescence-labeled cells. Properties of these transducers, such as contrast transfer function, linearity, and photo-response nonuniformity, have been measured. Two dedicated image processing units were incorporated into the system. The front-end processor, based on a digital signal processor, provides functions such as object detection, raw image calibration, compression, artifact removal, and filtering. The second image processor is associated with the frame memory and includes a histogram processor, a dedicated arithmetic logic unit for image processing functions, and a graphics module for one-bit overlay functions. An interactive program was developed to acquire cell images and to experiment with a range of segmentation algorithms, feature extractions, and other image processing functions. The results of any image operation are displayed on the video monitor. Once a desired processing sequence is determined, the sequence may be stored to become part of a command library and can be executed thereafter as a single instruction.  相似文献   

11.
P-glycoprotein ATPase activity has been studied almost exclusively by measuring inorganic phosphate release from inside-out cellular vesicles. We have recently proposed a new method based on measurements of the extracellular acidification rate (ECAR) of living cells with a Cytosensor microphysiometer. This method allows for systematic investigation of the various factors influencing P-glycoprotein activation in living cells. Basal metabolic rates or ECARs of different MDR1-transfected cell lines were compared with those of the Mdr1a(-/-)1b(-/-) knockout, MRP1-transfected, and corresponding wild-type cell lines. Basal ECARs of all cells were on the order of 10(7) protons/cell/s, whereby those of genetically modified cells were on average (over all cell lines) slightly lower than those of wild-type cells. The expression level of P-glycoprotein in MDR1-transfected cells had no influence on basal ECARs. Verapamil-induced ECARs were specific for MDR1-transfected cells and increased with the expression level of P-glycoprotein. Moreover, ECARs were dependent on the metabolic state of the cell and were (2.8 +/- 1.2) x 10(6) and (8.0 +/- 1.5) x 10(6) protons/cell/s in glucose-deficient and glucose-fed NIH-MDR-G185 cells, respectively, after verapamil (10 muM) stimulation. The ECARs were practically identical to the rates of lactate extrusion and thus reflect the rates of ATP synthesis via glycolysis. Taking into account the number of P-glycoprotein molecules per cell, the rate of ATP hydrolysis in inside-out vesicles of the same cells was determined as (9.2 +/- 1.5) x 10(6) phosphates/cell/s, in good agreement with the rate of ATP synthesized in glucose-fed cells. The energy required for P-glycoprotein activation relative to the basal metabolic energy was twice as large in glucose-deficient as in glucose-fed cells, suggesting cellular protection by P-glycoprotein even under conditions of starvation.  相似文献   

12.
Summary— The intra-cellular distribution of eight halogen glucocorticoids was investigated by ion microscopy in two cellular varieties of cultured non-cancer cells (fibroblast 3T3) and cancer cells (human breast tumor cells MCF-7). Two types of ion microscopy helped to determine this distribution, a direct imaging ion microscope (SMI 300) with low spatial resolution, and a scanning ion microscope (IMS4F), featuring high resolution, serving to obtain maps representing the intra-cellular distribution of the fluorine elements and drugs present in these monolayer cultured cells. The fluorine images representative of the drugs containing fluorine showed that these drugs are essentially concentrated in the cell nuclei. In these nuclei, the distribution of these drugs is different from that of heterochromatin and of the nucleolus.  相似文献   

13.
BACKGROUND: Advances in living cellular fluorescence biosensors and computerized microscopy enable a vision of fully automated high-resolution measurements of the detailed intracellular molecular dynamics directly linked to cellular behaviors. Given the heterogeneity of cell populations, a statistically relevant study of molecular-cellular dynamics is a key motivation for improved automation. METHODS: We explored automating computerized, microscope-based data extraction and analyses that monitor cell locomotion, rates of mitoses, and spatiotemporal activities of intracellular proteins via ratiometric fluorescent biosensors in mouse fibroblasts. Novel image processing methods included K-means clustering segmentation preprocessing followed by modified discrete, normalized cross-correlational alignment of two-color images; ratiometric processing for fluorescence resonance energy transfer (FRET) measurements; and intracellular spatial distribution measurements of RhoA GTPase activity. RESULTS: The interdivision time was 19.4 h (mean) +/- 6.0 h (SD) (n = 7) for the GFP-histone cells in the two-by-two field that was scanned for 72 h. After registration and ratioing of the cells with the RhoA biosensor, increases in both cell protrusion and retraction were coincident with to increases in RhoA activity. CONCLUSIONS: These advances lay the foundation for extracting and correlating measurements characterizing the functional relationships of spatial localization and protein activation with features of cell migration such as velocity, polarization, protrusion, retraction, and mitosis.  相似文献   

14.
Measurement of carbon dioxide levels has been employed to follow cellular metabolic reactions for quite some time. By radio-labeling substrate molecules and evaluating the radioactivity levels of the carbon dioxide released, insight into metabolic pathways can be gleaned. Currently, no carbon dioxide capturing device is available that can be used with large volume cell monolayers growing under standard conditions within a regular commercially available culture flask. In this note we describe a simple device for collecting radio-labeled carbon dioxide from a standard culture flask. The device is independent of the culture flask, but can be attached for metabolic measurements allowing cells to be grown under standard conditions prior to study. The presented design permits convenient transfer of the device between flasks without contaminating or disturbing cells growing within the flasks. Data are presented demonstrating the reproducibility of measurements made with multiple devices with different substrate concentrations and varying periods of time, ranging up to 3 h.  相似文献   

15.
Since the discovery of cisplatin more than 40 years ago and its clinical introduction in the 1970s an enormous amount of research has gone into elucidating the mechanism of action of cisplatin on tumor cells. With a novel cell biosensor chip system allowing continuous monitoring of respiration, glycolysis, and impedance we followed cisplatin treatment of different cancer cell lines in real-time. Our measurements reveal a first effect on respiration, in all cisplatin treated cell lines, followed with a significant delay by interference with glycolysis in HT-29, HCT-116, HepG2, and MCF-7 cells but not in the cisplatin-resistant cell line MDA-MB-231. Most strikingly, cell death started in all cisplatin-sensitive cell lines within 8 to 11 h of treatment, indicating a clear time frame from exposure, first response to cisplatin lesions, to cell fate decision. The time points of most significant changes were selected for more detailed analysis of cisplatin response in the breast cancer cell line MCF-7. Phosphorylation of selected signal transduction mediators connected with cellular proliferation, as well as changes in gene expression, were analyzed in samples obtained directly from sensor chips at the time points when changes in glycolysis and impedance occurred. Our online cell biosensor measurements reveal for the first time the time scale of metabolic response until onset of cell death under cisplatin treatment, which is in good agreement with models of p53-mediated cell fate decision.  相似文献   

16.
Chinese hamster ovary (CHO) cells are routinely used in the biopharmaceutical industry for production of therapeutic monoclonal antibodies (mAbs). Although multiple offline and time-consuming measurements of spent media composition and cell viability assays are used to monitor the status of culture in biopharmaceutical manufacturing, the day-to-day changes in the cellular microenvironment need further in-depth characterization. In this study, two-photon fluorescence lifetime imaging microscopy (2P-FLIM) was used as a tool to directly probe into the health of CHO cells from a bioreactor, exploiting the autofluorescence of intracellular nicotinamide adenine dinucleotide phosphate (NAD(P)H), an enzymatic cofactor that determines the redox state of the cells. A custom-built multimodal microscope with two-photon FLIM capability was utilized to monitor changes in NAD(P)H fluorescence for longitudinal characterization of a changing environment during cell culture processes. Three different cell lines were cultured in 0.5 L shake flasks and 3 L bioreactors. The resulting FLIM data revealed differences in the fluorescence lifetime parameters, which were an indicator of alterations in metabolic activity. In addition, a simple principal component analysis (PCA) of these optical parameters was able to identify differences in metabolic progression of two cell lines cultured in bioreactors. Improved understanding of cell health during antibody production processes can result in better streamlining of process development, thereby improving product titer and verification of scale-up. To our knowledge, this is the first study to use FLIM as a label-free measure of cellular metabolism in a biopharmaceutically relevant and clinically important CHO cell line.  相似文献   

17.
Change in the intracellular redox state is a consequence of various metabolic reactions, which simultaneously regulates various physiological phenomena in cells. Monitoring the redox state in living cells is thus very important for understanding cellular physiology. Various genetically encoded fluorescent redox sensors have therefore been developed. Recently, we developed oxidation-sensitive fluorescent proteins named Oba-Q (Sugiura, K., et al. (2015) Biochem. Biophys. Res. Commun. 457, 242–248), which exhibit dramatic quenching under oxidizing conditions. To extend the range of uses of redox sensor proteins, we refined these proteins based on the molecular architecture applied to Oba-Q, and successfully produced several redox sensor proteins based on CFP and YFP. Interestingly, some of these sensor proteins showed the reverse changes in emission compared with Oba-Q, implying remarkable fluorescence quenching under reducing conditions. We named this type of sensor protein Re-Q, reduction-sensed quenching protein. The cause of the redox-dependent fluorescence quenching could be clearly explained based on the crystal structure of Re-Q in the reduced and oxidized forms. In addition, by introducing suitable mutations into the sensors, we produced Oba-Q and Re-Q mutants exhibiting various midpoint redox potentials. This series of proteins can cover a wide range of redox potentials in the cell, so they should be applicable to various cells and even intracellular organelles. As an example, we successfully measured the redox responses in different cell compartments of cultured mammalian cells simultaneously against the anticancer reagents Kp372-1.  相似文献   

18.
Abstract: Some bacteria lose culturability in natural environments but retain measurable metabolic activity and are thus considered viable. Several techniques have been proposed to determine the activity of nonculturable cells. Due to the considerable physiological heterogeneity of bacterial populations in the environment, it is imperative to apply methods which measure cellular activity at the single cell level. This review focuses on two promising methods: the microcolony assay and the respiration assay based on reduction of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC). In the microcolony assay, viable cells are identified by their ability to perform a limited number of cell divisions and this approach is thus related to conventional culture techniques. Some recent methodological developments of the technique aiming at improving the incubation conditions and the detection of microcolonies are presented. Results obtained by the microcolony technique are used to introduce its advantages and limitations. The CTC-reduction assay determines a central cellular metabolic activity, but does not measure cell growth. Results of studies using this assay are presented, and it is emphasized that great care should be taken to optimize assay conditions for the studied organisms. Finally, the results obtained by different viability assays are compared. For a specific bacterium, several assays, addressing different aspects of cell metabolism, can provide comparable results suggesting that they provide meaningful viability estimates. On the other hand, the use of viability assays on complex indigenous populations may be ambiguous.  相似文献   

19.
In order to test the hypothesis that the progressive layering and differentiation of cell types during the development of the neural retina are associated with cell surface alterations we have separated distinct cell populations from the 14-day embryonic chick retina. Cells of these populations have been shown to differ in associative behavior and intramembrane particle content. We now report that these cells differ in cell surface glycoproteins. Proteins were labeled with two different extrinsic labels and one metabolic label. We used enzymatic transfer of galactose from UDP-gal to cellular acceptors, and borotritide reduction after galactose oxidation as extrinsic labels. Glucosamine incorporation was used as the metabolic label. In all these cases, we were able to identify bands on electrophoretic gels which were unique to individual populations.  相似文献   

20.
Fluorescence ratio imaging microscopy (Tanasugarn, L., P. McNeil, G. Reynolds, and D. L. Taylor, 1984, J. Cell Biol., 98:717-724) has been used to measure the spatial variations in cytoplasmic pH of individual quiescent and nonquiescent Swiss 3T3 cells. Fundamental issues of ratio imaging that permit precise and accurate temporal and spatial measurements have been addressed including: excitation light levels, lamp operation, intracellular probe concentrations, methods of threshold selection, photobleaching, and spatial signal-to-noise ratio measurements. Subcellular measurements can be measured accurately (less than 3% coefficient of variation) in an area of 3.65 microns 2 with the present imaging system. Quiescent Swiss 3T3 cells have a measured cytoplasmic pH of 7.09 (0.01 SEM), whereas nonquiescent cells have a pH of 7.35 (0.01 SEM) in the presence of bicarbonate buffer. A unimodal distribution of mean cytoplasmic pH in both quiescent and nonquiescent cells was identified from populations of cells measured on a cell by cell basis. Therefore, unlike earlier studies based on cell population averages, it can be stated that cells in each population exhibit a narrow range of cytoplasmic pH. However, the mean cytoplasmic pH can change based on the physiological state of the cells. In addition, there appears to be little, if any, spatial variation in cytoplasmic pH in either quiescent or nonquiescent Swiss 3T3 cells. The pH within the nucleus was always the same as the surrounding cytoplasm. These values will serve as a reference point for investigating the role of temporal and spatial variations in cytoplasmic pH in a variety of cellular processes including growth control and cell movement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号