首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To be effective as a gatekeeper regulating the access of binding proteins to the actin filament, adjacent tropomyosin molecules associate head-to-tail to form a continuous super-helical cable running along the filament surface. Chimeric head-to-tail structures have been solved by NMR and X-ray crystallography for N- and C-terminal segments of smooth and striated muscle tropomyosin spliced onto non-native coiled-coil forming peptides. The resulting 4-helix complexes have a tight coiled-coil N-terminus inserted into a separated pair of C-terminal helices, with some helical unfolding of the terminal chains in the striated muscle peptides. These overlap complexes are distinctly curved, much more so than elsewhere along the superhelical tropomyosin cable. To verify whether the non-native protein adducts (needed to stabilize the coiled-coil chimeras) perturb the overlap, we carried out Molecular Dynamics simulations of head-to-tail structures having only native tropomyosin sequences. We observe that the splayed chains all refold and become helical. Significantly, the curvature of both the smooth and the striated muscle overlap domain is reduced and becomes comparable to that of the rest of the tropomyosin cable. Moreover, the measured flexibility across the junction is small. This and the reduced curvature ensure that the super-helical cable matches the contours of F-actin without manifesting localized kinking and excessive flexibility, thus enabling the high degree of cooperativity in the regulation of myosin accessibility to actin filaments.  相似文献   

2.
Apoptin's functional N- and C-termini independently bind DNA   总被引:8,自引:0,他引:8  
Apoptin induces apoptosis specifically in tumour cells, where Apoptin is enriched in the DNA-dense heterochromatin and nucleoli. In vitro, Apoptin interacts with dsDNA, forming large nucleoprotein superstructures likely to be relevant for apoptosis induction. Its N- and C-terminal domains also have cell-killing activity, although they are less potent than the full-length protein. Here, we report that both Apoptin's N- and C-terminal halves separately bound DNA, indicating multiple independent binding sites. The reduced cell killing activity of both truncation mutants was mirrored in vitro by a reduced affinity compared to full-length Apoptin. However, none of the truncation mutants cooperatively bound DNA or formed superstructures, which suggests that cooperative DNA binding by Apoptin is required for the formation of nucleoprotein superstructures. As Apoptin's N- and C-terminal fragments not only share apoptotic activity, but also affinity for DNA, we propose that both properties are functionally linked.  相似文献   

3.
A systematic survey was carried out in an unbiased sample of 815 protein chains with a maximum of 20% homology selected from the Protein Data Bank, whose structures were solved at a resolution higher than 1.6 A and with a R-factor lower than 25%. A set of 5556 subsequences with alpha-helix or 3(10)-helix motifs was extracted from the protein chains considered. Global and local propensities were then calculated for all possible amino acid pairs of the type (i, i + 1), (i, i + 2), (i, i + 3), and (i, i + 4), starting at the relevant helical positions N1, N2, N3, C3, C2, C1, and N-int (interior positions), and also at the first nonhelical positions in both termini of the helices, namely, N-cap and C-cap. The statistical analysis of the propensity values has shown that pairing is significantly dependent on the type of the amino acids and on the position of the pair. A few sequences of three and four amino acids were selected and their high prevalence in helices is outlined in this work. The Glu-Lys-Tyr-Pro sequence shows a peculiar distribution in proteins, which may suggest a relevant structural role in alpha-helices when Pro is located at the C-cap position. A bioinformatics tool was developed, which updates automatically and periodically the results and makes them available in a web site.  相似文献   

4.
We present a structural analysis of a peptide, the sequence of which includes amino acids that show preferences for specific positions near the N- and C-termini in protein helices. This peptide has the sequence ac-YMSEDELKAAEAAFKRHGVP-amide, which includes a strong version of an N-terminal Harper-Rose capping box structure as well as a Gly located close to the C-terminus designed to elucidate its role in C-terminal capping. The sequence of five residues at the middle is inserted to separate effects at the two ends via a helix-stabilizing linker. Application of a simulated annealing procedure using interproton distance constraints derived from 1H NOESY experiments in water reveals the presence of a C-terminal structure in this model. The C-terminus forms a folded back structure in a significant fraction of structures generated by the annealing, in most of which Gly assumes an alpha L conformation. This structure occurs within a highly flexible region of the molecule and hence is occupied only a fraction of the time.  相似文献   

5.
The γ-subunit is required for the assembly of ATP synthases and plays a crucial role in their catalytic activity. We stepwise shortened the N-terminus and the C-terminus of the γ-subunit in the mitochondrial ATP synthase of yeast and investigated the relevance of these segments in the assembly of the enzyme and in the growth of the cells. We found that a deletion of 9 residues at the N-terminus or 20 residues at the C-terminus still allowed efficient import of the subunit into mitochondria; however, the assembly of both monomeric and dimeric holoenzymes was partially impaired. γ-Subunits lacking 13 N-terminal residues or 30 C-terminal residues were not assembled. Yeast strains expressing either of the truncated γ-subunits did not grow on non-fermentable carbon sources, indicating that non-assembled parts of the ATP synthase accumulated and impaired essential mitochondrial functions.  相似文献   

6.
Davidson MB  Brown GW 《DNA Repair》2008,7(8):1221-1232
ELG1 (enhanced level of genome instability) encodes a Replication Factor C (RFC) homolog that is important for the maintenance of genome stability. Elg1 interacts with Rfc2-5, forming the third alternative RFC complex identified to date. We found that Elg1 plays a role in the suppression of spontaneous DNA damage in addition to its previously identified roles in the resistance to DNA damage. Using mutational analysis we examined the function of conserved and unique regions of Elg1 in these roles. We found that the Walker A motif in the conserved RFC region is dispensable for Elg1 function in vivo. The RFC region is important for association with chromatin although residues predicted to mediate interactions with DNA are dispensable for Elg1 function. The unique C-terminus of Elg1 mediates oligomerization with Rfc2-5, nuclear import, and chromatin association, and is critical for the function of Elg1. Finally, we demonstrated that the N-terminus of Elg1 contributes to the maintenance of genome stability, and that one function of this N-terminus is to promote the nuclear localization of Elg1. Together, these studies delineate the regions of Elg1 important for its function in damage resistance and in the suppression of spontaneous DNA damage.  相似文献   

7.
Fibroblast growth factor-21 (FGF21) signaling requires the presence of β-Klotho, a co-receptor with a very short cytoplasmic domain. Here we show that FGF21 binds directly to β-Klotho through its C-terminus. Serial C-terminal truncations of FGF21 weakened or even abrogated its interaction with β-Klotho in a Biacore assay, and led to gradual loss of potency in a luciferase reporter assay but with little effect on maximal response. In contrast, serial N-terminal truncations of FGF21 had no impact on β-Klotho binding. Interestingly, several of them exhibited characteristics of partial agonists with minimal effects on potency. These data demonstrate that the C-terminus of FGF21 is critical for binding to β-Klotho and the N-terminus is critical for fibroblast growth factor receptor (FGFR) activation.

Structured summary

MINT-6799939: FGFR1c (uniprotkb:P11362) binds (MI:0407) to β-Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)MINT-6799907, MINT-6799922: FGF21 (uniprotkb: Q9NSA1) binds (MI:0407) to β-Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)  相似文献   

8.
Voltage-dependent ion channels are thought to consist of a highly conserved repeated core of six transmembrane segments, flanked by more variable cytoplasmic domains. Significant functional differences exist among related types of K+ channels. These differences have been attributed to the variable domains, most prominently the N- and C-termini. We have therefore investigated the functional importance of both termini for the delayed rectifier K+ channel from rat brain encoded by the drk1 gene. This channel has an unusually long C-terminus. Deletions in either terminus affected both activation and inactivation, in some cases profoundly. Unexpectedly, more extensive deletions in both termini restored gating. We could therefore define a core region only slightly longer than the six transmembrane segments that is sufficient for the formation of channels with the kinetics of a delayed rectifier.  相似文献   

9.
Procedures are described by which troponin and tropomyosin can be isolated from cardiac muscle rapidly, with minimal damage by oxidation. Cardiac relaxing proteins inhibit actomyosin ATPase activity in the presence of ethyleneglycoltetraacetic acid (EGTA), and permit graded stimulation by Ca2+. This stimulation is independent of preexisting inhibition, and greater than that obtained with skeletal proteins. Characteristics of Scatchard plots for Ca2+ binding suggest that troponin contains one class of sites which interact at high fractional occupancy. Interaction appears to be enhanced by tropomyosin. Mean values for the estimated maximum affinity and capacity of six canine cardiac troponin preparations were: 4.92·106 M−1, and 21.58·10−6 moles·g−1. Values for skeletal troponin were not significantly different. Native tropomyosin bound about half as much Ca2+ per g, with maximum affinity the same as troponin. Pure tropomyosin bound no Ca2+. Cardiac and skeletal proteins differ in that the former are much more labile, and more readily influenced by ions and drugs.  相似文献   

10.
Tm (tropomyosin) is an evolutionarily conserved α-helical coiled-coil protein, dimers of which form end-to-end polymers capable of associating with and stabilizing actin filaments, and regulating myosin function. The fission yeast Schizosaccharomyces pombe possesses a single essential Tm, Cdc8, which can be acetylated on its N-terminal methionine residue to increase its affinity for actin and enhance its ability to regulate myosin function. We have designed and generated a number of novel Cdc8 mutant proteins with N-terminal substitutions to explore how stability of the Cdc8 overlap region affects the regulatory function of this Tm. By correlating the stability of each protein, its propensity to form stable polymers, its ability to associate with actin and to regulate myosin, we have shown that the stability of the N-terminal of the Cdc8 α-helix is crucial for Tm function. In addition we have identified a novel Cdc8 mutant with increased N-terminal stability, dimers of which are capable of forming Tm polymers significantly longer than the wild-type protein. This protein had a reduced affinity for actin with respect to wild-type, and was unable to regulate actomyosin interactions. The results of the present paper are consistent with acetylation providing a mechanism for modulating the formation and stability of Cdc8 polymers within the fission yeast cell. The data also provide evidence for a mechanism in which Tm dimers form end-to-end polymers on the actin filament, consistent with a co-operative model for Tm binding to actin.  相似文献   

11.
K Sutoh  H L Yin 《Biochemistry》1989,28(12):5269-5275
Gelsolin was cleaved by chymotrypsin or thermolysin into an N-terminal Mr 45,000 fragment (45N) and a C-terminal Mr 38,000 fragment (38C). The N-terminal half was further cleaved into two fragments with Mr 17,000 (17N) and Mr 28,000 (28N). These fragments were complexed with actin and cross-linked with 1-ethyl-3-[3-(dimethylamino)prophyl]carbodiimide (EDC) to introduce covalent bonds into their contact sites. The location of these bonds was mapped along the actin sequence by end-label fingerprinting with highly sensitive probes for the N- and C-termini of actin. The mapping studies revealed that two gelsolin N-terminal fragments (17N and 28N) were cross-linked with the actin C-terminal segment. The result indicates that the actin N- and C-terminal segments are in the binding site of gelsolin.  相似文献   

12.
J Sancho  L Serrano  A R Fersht 《Biochemistry》1992,31(8):2253-2258
A single histidine residue has been placed at either the N-terminus or the C-terminus of each of the two alpha-helices of barnase. The pKa of that histidine residue in each of the four mutants has been determined by 1H NMR. The pKas of the two residues at the C-terminus are, on average, 0.5 unit higher, and those of the residues at the N-terminus are 0.8 unit lower, than the pKa of histidines in unfolded barnase at low ionic strength. The conformational stability of the mutant proteins at different values of pH has been measured by urea denaturation. C-Terminal histidine mutants are approximately 0.6 kcal mol-1 more stable when the introduced histidine is protonated, both at low and high ionic strength. N-Terminal mutants with a protonated histidine residue are approximately 1.1 kcal mol-1 less stable at low ionic strength and 0.5 kcal mol-1 less stable at high ionic strength (1 M NaCl). The low-field 1H NMR spectra of the mutant proteins at low pH suggest that the C-terminal histidines form hydrogen bonds with the protein while the N-terminal histidines do not form the same. The perturbations of pKa and stability result from a combination of different electrostatic environments and hydrogen-bonding patterns at either ends of helices. The value of 0.6 kcal mol-1 represents a lower limit to the favorable electrostatic interaction between the alpha-helix dipole and a protonated histidine residue at the C-terminal end of the helix.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
AQP5 and AQP8 possess targeting/retention motifs which mediate their localization to the apical and basolateral membranes, respectively, of polarized MDCK-II cells. As targeting/retention motifs have been localized to the N- or C-termini of other AQPs, we sought the location of such motifs in AQPs 5 and 8 by exchanging their corresponding N- or C-termini and examining the expression, localization, and function of the resultant chimeras. We did not detect the expression of constructs in which the C-terminus of AQP5 was replaced by the C-terminus of AQP8. Substitution of the N-terminus of AQP8 for the N-terminus of AQP5 generated a construct which was trapped intracellularly and did not significantly facilitate transepithelial fluid movement. In contrast, modifications of the N- and C-termini of AQP8 were better tolerated. Substitution of either AQP8 terminus by the corresponding AQP5 terminus generated constructs which localized to basolateral membranes and facilitated transepithelial fluid movement. Our results suggest that, unlike the other AQP targeting/retention signals reported thus far, an AQP8 basolateral targeting/retention motif might reside between the two cytosolic termini.  相似文献   

14.
The purpose of the study was to compare the effects of deamidation alone, truncation alone, or both truncation and deamidation on structural and functional properties of human lens alphaA-crystallin. Specifically, the study investigated whether deamidation of one or two sites in alphaA-crystallin (i.e., alphaA-N101D, alphaA-N123D, alphaA-N101/123D) and/or truncation of the N-terminal domain (residues 1-63) or C-terminal extension (residues 140-173) affected the structural and functional properties relative to wild-type (WT) alphaA. Human WT-alphaA and human deamidated alphaA (alphaA-N101D, alphaA-N123D, alphaA-N101/123D) were used as templates to generate the following eight N-terminal domain (residues 1-63) deleted or C-terminal extension (residues 140-173) deleted alphaA mutants and deamidated plus N-terminal domain or C-terminal extension deleted mutants: (i) alphaA-NT (NT, N-terminal domain deleted), (ii) alphaA-N101D-NT, (iii) alphaA-N123D-NT, (iv) alphaA-N101/123D-NT, (v) alphaA-CT (CT, C-terminal extension deleted), (vi) alphaA-N101D-CT, (vii) alphaA-N123D-CT, and (viii) alphaA-N101/123D-CT. All of the proteins were purified and their structural and functional (chaperone activity) properties determined. The desired deletions in the alphaA-crystallin mutants were confirmed by matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) mass spectrometric analysis. Relative to WT-alphaA homomers, the mutant proteins exhibited major structural and functional changes. The maximum decrease in chaperone activity in homomers occurred on deamidation of N123 residue, but it was substantially restored after N- or C-terminal truncations in this mutant protein. Far-UV circular dichroism (CD) spectral analyses generally showed an increase in the beta-contents in alphaA mutants with deletions of N-terminal domain or C-terminal extension and also with deamidation plus above N- or C-terminal deletions. Intrinsic tryptophan (Trp) and total fluorescence spectral studies suggested altered microenvironments in the alphaA mutant proteins. Similarly, the ANS (8-anilino-1-naphthalenesulfate) binding showed generally increased fluorescence with blue shift on deletion of the N-terminal domain in the deamidated mutant proteins, but opposite effects were observed on deletion of the C-terminal extension. Molecular mass, polydispersity of homomers, and the rate of subunit exchange with WT-alphaB-crystallin increased on deletion of the C-terminal extension in the deamidated alphaA mutants, but on N-terminal domain deletion these values showed variable results based on the deamidation site. In summary, the data suggested that the deamidation alone showed greater effect on chaperone activity than the deletion of N-terminal domain or C-terminal extension of alphaA-crystallin. The N123 residue of alphaA-crystallin plays a crucial role in maintaining its chaperone function. However, both the N-terminal domain and C-terminal extension are also important for the chaperone activity of alphaA-crystallin because the activity was partially or fully recovered following either deletion in the alphaA-N123D mutant. The results of subunit exchange rates among alphaA mutants and WT-alphaB suggested that such exchange is an important determinant in maintenance of chaperone activity following deamidation and/or deletion of the N-terminal domain or C-terminal extension in alphaA-crystallin.  相似文献   

15.
Human glutamate carboxypeptidase II (GCPII) is a co-catalytic metallopeptidase and its putative catalytic domain is homologous to the aminopeptidases from Vibrio proteolyticus and Streptomyces griseus. In humans, the enzyme is expressed predominantly in the nervous system and the prostate. The prostate form, termed prostate-specific membrane antigen, is overexpressed in prostate cancer and is used as a diagnostic marker of the disease. Inhibition of the form of GCPII expressed in the central nervous system has been shown to protect against ischemic injury in experimental animal models. Human GCPII consists of 750 amino acids, and six individual domains were predicted to constitute the protein structure. Here, we report the analysis of the contribution of these putative domains to the structure/function of recombinant human GCPII. We cloned 13 mutants of human GCPII that are truncated or extended at one or both the N- and C-termini of the GCPII sequence. The clones were used to generate stably transfected Drosophila Schneider's cells, and the expression and carboxypeptidase activities of the individual protein products were determined. The extreme C-terminal region of human GCPII was found to be critical for the hydrolytic activity of the enzyme. The deletion of as few as 15 amino acids from the C-terminus was shown to completely abolish the enzymatic activity of GCPII. Furthermore, the GCPII carboxypeptidase activity was abrogated upon removal of more than 60 amino acid residues from the N-terminus of the protein. Overall, these results clearly show that amino acid segments at the N- and C-termini of the ectodomain of GCPII are essential for its carboxypeptidase activity and/or proper folding.  相似文献   

16.
The co-operative response of regulated actomyosin ATPase to increasing concentrations of calcium has been attributed to nearest-neighbor interactions, presumably between troponin-tropomyosin complexes. The degree of co-operativity was not decreased after the carboxy-terminal 11 amino acid residues had been removed from tropomyosin by carboxypeptidase A. This indicates that the interactions between neighboring troponin-tropomyosin complexes do not occur through the overlapping tropomyosin ends.  相似文献   

17.
Analysis of the Arabidopsis thaliana, Saccharomyces cerevisiae, Mus musculus, Escherichia coli, Bacillus subtilis, Thermoplasma acidophilum, and Sulfolobus tokodaii genomes demonstrate that many amino acid biases occur at the N- and C-termini of proteins, a statistically significant number of these biases are evolutionarily conserved, and these biases occur in amino acids beyond the first and last five amino acids. Analyses designed to shed light on the mechanism causing amino acid biases suggest that in at least some cases the bias is caused by forces acting at the nucleic acid level. It is also demonstrated that in E. coli functionally related proteins show similar biases at the N- and C-termini suggesting that the mechanisms causing the biases are complex and in some cases are related to function.  相似文献   

18.
Two octapeptides derived from the sequence of the N- and C-termini of HIV-1 protease were tested for their ability to inhibit HIV-1 reproduction. Weak inhibitory activity was found with each of the two peptides. It is assumed that HIV-1 protease is the target of the inhibitory action. In spite of the moderate inhibitory activity the results are encouraging since they may be improved by various means.  相似文献   

19.
CD experiments are reported for several coiled-coil species in the tyrosine/disulfide (approximately 250-350-nm) region. Intact noncross-linked tropomyosin (approximately 3 degrees C) shows a negative nonsymmetric band maximal at 280 nm. This spectrum is the sum over six tyrosines/chain, and has conformational significance, since it disappears on denaturation. Experiments on an excised coiled-coil segment, each of whose chains comprise residues 11-127 of the tropomyosin sequence and only one tyrosine (Y60), reveal that not all tyrosines are alike. The spectrum at 3 degrees C shows a small negative maximum at approximately 285 nm and a substantial, hitherto unknown, positive band at approximately 270 nm, the latter masked in the parent protein by the negative contribution from the other tyrosines. A noncross-linked coiled-coil segment comprising residues 142-281, in which Y60 is absent, shows no such positive band. This peculiarity of Y60 is confirmed by absorbance spectra, with the extinction coefficient of Y60 larger in benign media than the average of the other tyrosines. Intact (3 degrees C) C190 cross-linked tropomyosin is known to yield, besides tyrosine contributions, a positive maximum at approximately 300 nm. Subtracting the corresponding data for noncross-linked tropomyosin shows that the disulfide spectrum itself actually has two equal, partly resolved bands at, respectively, 250 and 280 nm. The existence of a chiral disulfide argues for a relatively rigid, perhaps strained, local coiled coil. A C190 cross-linked segment comprising residues 142-281 shows a chiral disulfide spectrum like tropomyosin's, but another segment, comprising residues 168-284, shows none; thus removal of residues 142-167 causes loss of chirality at C190, over 20 residues away. These spectra thus contain important information on the subtle local differences in coiled-coil structures.  相似文献   

20.
Striated muscle tropomyosin (TM) interacts with actin and the troponin complex to regulate calcium-mediated muscle contraction. Previous work by our laboratory established that alpha- and beta-TM isoforms elicit physiological differences in sarcomeric performance. Heart myofilaments containing beta-TM exhibit an increased sensitivity to calcium that is associated with a decrease in the rate of relaxation and a prolonged time of relaxation. To address whether the carboxyl-terminal, troponin T binding domain of beta-TM is responsible for these physiological alterations, we exchanged the 27 terminal amino acids of alpha-TM (amino acids 258 -284) for the corresponding region in beta-TM. Hearts of transgenic mice that express this chimeric TM protein exhibit significant decreases in their rates of contraction and relaxation when assessed by ex vivo work-performing cardiac analyses. There are increases in the time to peak pressure and a dramatic increase in end diastolic pressure. In myofilaments, this chimeric protein induces depression of maximum tension and ATPase rate, together with a significant decrease in sensitivity to calcium. Our data are the first to demonstrate that the TM isoform-specific carboxyl terminus is a critical determinant of sarcomere performance and calcium sensitivity in both the whole heart and in isolated myofilaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号