首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytotoxic potential of ribonuclease and ribonuclease hybrid proteins   总被引:4,自引:0,他引:4  
Pancreatic RNase injected into Xenopus oocytes abolishes protein synthesis at concentrations comparable to the toxin ricin yet has no effect on oocyte protein synthesis when added to the extracellular medium. Therefore RNase behaves like a potent toxin when directed into a cell. To explore the cytotoxic potential of RNase toward mammalian cells, bovine pancreatic ribonuclease A was coupled via a disulfide bond to human transferrin or antibodies to the transferrin receptor. The RNase hybrid proteins were cytotoxic to K562 human erythroleukemia cells in vitro with an IC50 around 10(-7) M whereas greater than 10(-5) M native RNase was required to inhibit protein synthesis. Cytotoxicity requires both components of the conjugate since excess transferrin or ribonuclease inhibitors added to the medium protected the cells from the transferrin-RNase toxicity. Compounds that interfere with transferrin receptor cycling and compartmentalization such as ammonium chloride decreased the cytotoxicity of transferrin-RNase. After a dose-dependent lag period inactivation of protein synthesis by transferrin-RNase followed a first-order decay constant. In a clonogenic assay that measures the extent of cell death 1 x 10(-6) M transferrin-RNase killed at least 4 logs or 99.99% of the cells whereas 70 x 10(-6) M RNase was nontoxic. These results show that RNase coupled to a ligand can be cytotoxic. Human ribonucleases coupled to antibodies also may exhibit receptor-mediated toxicities providing a new approach to selective cell killing possibly with less systemic toxicity and importantly less immunogenicity than the currently employed ligand-toxin conjugates.  相似文献   

2.
R Shapiro  B L Vallee 《Biochemistry》1991,30(8):2246-2255
The interactions of human placental ribonuclease inhibitor (PRI) with bovine pancreatic ribonuclease (RNase) A and human angiogenin, a plasma protein that induces blood vessel formation, have been characterized in detail in earlier studies. However, studies on the interaction of PRI with the RNase(s) indigenous to placenta have not been performed previously, nor have any placental RNases been identified. In the present work, the major human placental RNase (PR) was purified to homogeneity by a five-step procedure and was obtained in a yield of 110 micrograms/kg of tissue. The placental content of angiogenin was also examined and was found to be at least 10-fold lower than that of PR. On the basis of its amino acid composition, amino-terminal sequence, and catalytic properties, PR appears to be identical with an RNase previously isolated from eosinophils (eosinophil-derived neurotoxin), liver, and urine. The apparent second-order rate constant of association for the PR.PRI complex, measured by examining the competition between PR and angiogenin for PRI, is 1.9 X 10(8) M-1 s-1. The rate constant for dissociation of the complex, determined by HPLC measurement of the rate of release of PR from its complex with PRI in the presence of a scavenger for free PRI, is 1.8 X 10(-7) s-1. Thus the Ki value for the PR.PRI complex is 9 X 10(-16) M, similar to that obtained with angiogenin, and 40-fold lower than that measured with RNase A. Complex formation causes a small red shift in the protein fluorescence emission spectrum, with no significant change in overall intensity. The fluorescence quantum yield of PR and the Stern-Volmer constant for fluorescence quenching by acrylamide are both high, possibly due to the presence of an unusual posttranslationally modified tryptophan residue at position 7 in the primary sequence.  相似文献   

3.
The compactness of ribonuclease A with intact disulfide bonds and reduced ribonuclease A was investigated by synchrotron small-angle X-ray scattering. The Rg values and the Kratky plots showed that non-reduced ribonuclease A maintain a compact shape with a Rg value of about 17.3 Å in 8 M urea. The reduced ribonuclease A is more expanded, its Rg value is about 20 Å in 50 mM Tris-HCl buffer at pH 8.1 containing 20 mM DTT. Further expansions of reduced ribonuclease A were observed in the presence of high concentrations of denaturants, indicating that reduced ribonuclease A is more expanded and is in neither a random coil [A. Noppert et al., FEBS Lett. 380 (1996) 179–182] nor a compact denatured state [T.R. Sosnick and J. Trewhella, Biochemistry 31 (1992) 8329–8335]. The four disulfide bonds keep ribonuclease A in a compact state in the presence of high concentrations of urea.  相似文献   

4.
5.
6.
Analyzing the pattern of oligonucleotide formation induced by HP-RNase cleavage shows that the enzyme does not act randomly and follows a more endonucleolytic pattern when compared to RNase A. The enzyme prefers the binding and cleavage of longer substrate molecules, especially when the phosphodiester bond that is broken is 8-11 nucleotides away from at least one of the ends of the substrate molecule. This more endonucleolytic pattern is more appropriate for an enzyme with a regulatory role. Deleting two positive charges on the N-terminus (Arg4 and Lys6) modifies this pattern of external/internal phosphodiester bond cleavage preference, and produces a more exonucleolytic enzyme. These residues may reinforce the strength of a non-catalytic secondary phosphate binding (p2) or, alternatively, constitute a new non-catalytic phosphate binding subsite (p3).  相似文献   

7.
Bovine aorta ribonuclease   总被引:2,自引:0,他引:2  
  相似文献   

8.
9.
10.
11.
12.
Human platelets contain an RNase which has a pH optimum at 5.0. It hydrolyzes the secondary phosphate esters of uridine 3′-phosphates. It slowly converts uridine 2′:3′-and cytidine 2′:3′-cyclic phosphates to their corresponding nucleoside 3′-phosphates. Poly (A), poly (G) and poly (C) are not only refractory to the action of this enzyme, but also inhibit its action on poly (U). It differs from human granulocyte RNase, human serum RNase and bovine pancreatic RNase. Because of its unique property, this enzyme could serve as a biochemical marker in disorders involving the platelet destruction.  相似文献   

13.
Horse pancreatic ribonuclease   总被引:2,自引:0,他引:2  
  相似文献   

14.
The ribonuclease inhibitor protein (RI) binds to members of the bovine pancreatic ribonuclease (RNase A) superfamily with an affinity in the femtomolar range. Here, we report on structural and energetic aspects of the interaction between human RI (hRI) and human pancreatic ribonuclease (RNase 1). The structure of the crystalline hRI x RNase 1 complex was determined at a resolution of 1.95 A, revealing the formation of 19 intermolecular hydrogen bonds involving 13 residues of RNase 1. In contrast, only nine such hydrogen bonds are apparent in the structure of the complex between porcine RI and RNase A. hRI, which is anionic, also appears to use its horseshoe-shaped structure to engender long-range Coulombic interactions with RNase 1, which is cationic. In accordance with the structural data, the hRI.RNase 1 complex was found to be extremely stable (t(1/2)=81 days; K(d)=2.9 x 10(-16) M). Site-directed mutagenesis experiments enabled the identification of two cationic residues in RNase 1, Arg39 and Arg91, that are especially important for both the formation and stability of the complex, and are thus termed "electrostatic targeting residues". Disturbing the electrostatic attraction between hRI and RNase 1 yielded a variant of RNase 1 that maintained ribonucleolytic activity and conformational stability but had a 2.8 x 10(3)-fold lower association rate for complex formation and 5.9 x 10(9)-fold lower affinity for hRI. This variant of RNase 1, which exhibits the largest decrease in RI affinity of any engineered ribonuclease, is also toxic to human erythroleukemia cells. Together, these results provide new insight into an unusual and important protein-protein interaction, and could expedite the development of human ribonucleases as chemotherapeutic agents.  相似文献   

15.
The dissociation rate constant of the angiogenin-placental ribonuclease inhibitor complex was determined by measuring the release of free angiogenin from the complex in the presence of scavenger for free placental ribonuclease inhibitor (PRI). In 0.1 M NaCl, pH 6, 25 degrees C, this value is 1.3 X 10(-7) s-1 (t1/2 congruent to 60 days). The Ki value for the binding of PRI to angiogenin, calculated from the association and dissociation rate constants, is 7.1 X 10(-16) M. The corresponding values for the interaction of RNase A with PRI, determined by similar means, are both considerably higher: the dissociation rate constant is 1.5 X 10(-5) s-1 (t1/2 = 13 h), and the Ki value is 4.4 X 10(-14) M. Thus, PRI binds about 60 times more tightly to angiogenin than to RNase A. The effect of increasing sodium chloride concentration on the binding of PRI to RNase A was explored by Henderson plots. The Ki value increases to 39 pM in 0.5 M NaCl and to 950 pM in 1 M NaCl, suggesting the importance of ionic interactions. The mode of inhibition of RNase A by PRI was determined by examining the effect of a competitive inhibitor of RNase A, cytidine 2'-phosphate, on the association rate of PRI with RNase A. Increasing concentrations of cytidine 2'-phosphate decrease the association rate in a manner consistent with a competitive mode of inhibition.  相似文献   

16.
A strain of Escherichia coli lacking RNAase III and containing thermolabile RNAase E and RNAase P was labeled with 32Pi at a non-permissive temperature. RNA molecules were separated by two-dimensional polyacrylamide gel electrophoresis. Most of the small RNA species were isolated and analyzed for the presence of 5′ nucleoside triphosphates. In 16 of the 22 species analyzed a significant number of the individual molecules contained 5′ di or triphosphates. We conclude, therefore, that very little endonucleolytic RNA processing occurs in the absence of the three RNA processing enzymes RNAase III, RNAase E and RNAase P.  相似文献   

17.
18.
19.
20.
One of the main and, chronologically, perhaps one of the first questions in the study of globular protein heat denaturation is that of the applicability of the “all or none” principle to this process, i.e., whether the transition of globular protein from the native into the denaturated state occurs abruptly, without intermediate, thermodynamically stable forms or there are several successive transitions. Despite an intensive study of the process of denaturation this question still remains unsettled. Moreover, its actuality has greatly increased lately with the accumulation of contradictory data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号