首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dnaB protein of Escherichia coli, a multifunctional DNA-dependent ribonucleotide triphosphatase and dATPase, cross-links to ATP on ultraviolet irradiation under conditions that support rNTPase and dATPase activities of dnaB protein. The covalent cross-linking to ATP is specifically inhibited by ribonucleotides and dATP. Tryptic peptide mapping demonstrates that ATP cross-links to only the 33-kDa tryptic fragment (Fragment II) of dnaB protein. The presence of single-stranded DNA alters the covalent labeling of dnaB protein by ATP, suggesting a possible role of DNA on the mode of nucleotide binding by dnaB protein. Present studies demonstrate that the dnaC gene product binds ribonucleotides independent of dnaB protein. On dnaB-dnaC protein complex formation, covalent incorporation of ATP to dnaB protein decreases approximately 70% with a concomitant increase of ATP incorporation to dnaC protein by approximately 3-fold. The mechanism of this phenomenon has been analyzed in detail by titrating dnaB protein with increasing amounts of dnaC protein. The binding of dnaC protein to dnaB protein appears to be a noncooperative process. The lambda P protein, which interacts with dnaB protein in the bacteriophage lambda DNA replication, does not bind ATP in the presence or absence of dnaB protein. However, lambda P protein enhances the covalent incorporation of ATP to dnaB protein approximately 4-fold, suggesting a direct physical interaction between lambda P and dnaB proteins with a probable change in the modes of nucleotide binding to dnaB protein. The lambda P protein likely forms a lambda P-dnaB-ATP dead-end ternary complex. The implications of these results in the E. coli and bacteriophage lambda chromosomal DNA replication are discussed.  相似文献   

2.
A soluble enzyme system that specifically initiates lambda dv plasmid DNA replication at a bacteriophage lambda replication origin [Wold et al. (1982) Proc. Natl. Acad. Sci. USA 79, 6176-6180] is also capable of replicating the single-stranded circular chromosomes of phages M13 and phi X174 to a duplex form. This chain initiation on single-stranded templates is novel in that it is absolutely dependent on the lambda O and P protein chromosomal initiators and on several Escherichia coli proteins that are known to function in the replication of the lambda chromosome in vivo, including the host dnaB, dnaG (primase), dnaJ and dnaK replication proteins. Strand initiation occurs at multiple sites following an O and P protein-dependent pre-priming step in which the DNA is converted into an activated nucleoprotein complex containing the bacterial dnaB protein. We propose a scheme for the initiation of DNA synthesis on single-stranded templates in this enzyme system that may be relevant to strand initiation events that occur during replication of phage lambda in vivo.  相似文献   

3.
Initiation of replication of lambda DNA requires assembly of the proper nucleoprotein complex consisting of the lambda origin of replication-lambda O-lambda P-dnaB proteins. The dnaJ, dnaK and grpE heat shock proteins destabilize the lambda P-dnaB interaction in this complex permitting dnaB helicase to unwind lambda DNA near ori lambda sequence. First step of this disassembling reaction is the binding of dnaK protein to lambda P protein. In this report we examined the influence of dnaJ and grpE proteins on stability of the lambda P-dnaK complex. Our results show that grpE alone dissociates this complex, but both grpE and dnaJ together do not. These results suggest that, in the presence of grpE protein, dnaK protein has a higher affinity for lambda P protein complexed with dnaJ protein than in the situation where grpE protein is not used.  相似文献   

4.
5.
An Escherichia coli mutant, ts121, was isolated following random insertional mutagenesis using phage lambda Mu transposition. The mutant phenotype includes inability to form colonies at temperatures above 38 degrees C and inability to propagate phage lambda at all temperatures. A lambda i434 cI- (ts121)+ transducing phage was isolated on the basis of its ability to form plaques on ts121 mutant bacteria. Using this transducing phage, it was shown through complementation and protein analyses, that the ts121 mutation is located in the dnaB gene. The exact insertion event was identified by polymerase chain reaction amplification of the DNA sequences containing the insertion junction. The mutational insertion event in ts121 was mapped precisely between base pairs 1514 and 1515 of the dnaB gene. This result predicts that the mutant dnaB protein has lost its six terminal amino acids. The reading frame shifts into Mu-specific DNA sequences resulting in an additional 20 amino acid residues. The E. coli wild type dnaB protein participates in host replication and interacts with lambda P protein to initiate phage lambda DNA replication. Our results demonstrate that the extreme carboxyl end of the dnaB protein is required for productive interaction with the lambda P replication protein at all temperatures, and is important for dnaB function at temperatures above 38 degrees C. Cold-sensitive extragenic suppressors of the ts121 mutation were isolated on the basis of their ability to restore colony formation at 42 degrees C. One of these extragenic suppressors was mapped at 54 min on the E. coli genetic map and localized to the suhB gene, whose product may affect the expression of a number of genes at the translational level.  相似文献   

6.
The Escherichia coli dnaB252 allele is the only dnaB mutation which confers a deoxyribonucleic acid initiation-defective phenotype on the cell. The presence of a multicopy hybrid plasmid containing the dnaC+ gene in a dnaB252 strain completely suppressed the temperature-sensitive phenotype. It is suggested that at high temperature the dnaB252 protein has a lowered affinity for dnaC protein, and that the formation of a dnaB-dnaC complex is mandatory for initiation.  相似文献   

7.
8.
The tif-1 mutation in the Escherichia coli recA gene is known to cause induction of the various "SOS" functions at high temperature, including massive synthesis of the recA protein, lethal filamentation, elevated mutagenesis, and, in lambda lysogens, induction of prophage. It is shown here that the deoxyribonucleic acid initiation mutation dnaB252 suppresses all these manifestations of tif expression. Induction of lambda by ultraviolet irradiation, however, is not affected by the dnaB252 mutation. No similar suppression of tif is observed with other dnaB mutations affecting deoxyribonucleic acid elongation or with other deoxyribonucleic acid initiation mutations at the dnaA and dnaC loci. The fact that an alteration of the dnaB protein specifically suppresses tif-mediated SOS induction implies a role of the replication apparatus in this process, as has been suggested for ultraviolet induction. The induction of lambda is known to proceed via repressor cleavage, presumably promoted by an activated (protease) form of the recA protein. Since lambda induction is normal after ultraviolet irradiation of the tif-1 dnaB252(lambda) strain, tif-mediated induction in this strain may be blocked in a tif-specific step leading to activation of the recA (tif) protein. It is possible that the recA (tif) mutant protein may be directly involved in the replication complex in processes leading to this activation.  相似文献   

9.
Bacteriophage P1 lysogenizes Escherichia coli cells as a plasmid with approximately the same copy number as the copy number of the host chromosome. Faithful inheritance of the plasmids relies upon proper DNA replication, as well as a partition system that actively segregates plasmids to new daughter cells. We genetically screened for E. coli chromosomal mutations that influenced P1 stability and identified a novel temperature-sensitive allele of the dnaB helicase gene (dnaB277) that replaces serine 277 with a leucine residue (DnaB S277L). This allele conferred a severe temperature-sensitive phenotype to the host; dnaB277 cells were not viable at temperatures above 34 degrees C. Shifting dnaB277 cells to 42 degrees C resulted in an immediate reduction in the rate of DNA synthesis and extensive cell filamentation. The dnaB277 allele destabilized P1 plasmids but had no significant influence on the stability of the F low-copy-number plasmid. This observation suggests that there is a specific requirement for DnaB in P1 plasmid maintenance in addition to the general requirement for DnaB as the replicative helicase during elongation.  相似文献   

10.
The dnaAcos mutations are phenotypic suppressors of dnaAts46 that are co-transduced with dnaA, render the cell cold sensitive, and cause an excess of chromosome replication relative to cell mass when the cells are shifted from 42 degrees C to 32 degrees C. We have used pulse labelling and DNA-DNA hybridization to follow the effect of a temperature shift on the replication of the chromosome and of the plasmids pSC101, RTF-Tc, and lambda dv in such strains. After a shift of a dnaAcos strain from 42 degrees C to 32 degrees C (non-permissive temperature), initiation of the chromosome and replication of the plasmid pSC101 are stimulated, while the dnaA-independent plasmid RTF-Tc is not affected. The presence of pSC101 does not affect the level of overinitiation of the chromosome. The presence of lambda dv suppresses the cold sensitivity of dnaAcos mutants and allows the cells to grow at both 32 degrees C and 42 degrees C. The presence of lambda dv suppresses the overinitiation of chromosome and of pSC101 replication at 32 degrees C. Previous reports had shown that these suppressions involve an interaction between the dnaA product and the lambda P protein, which is also known to interact with dnaB. We show here that the mutant prophage P1 bac-crr, which produces high levels of a dnaB analogue, suppresses the dnaAcos phenotype, while wild type P1 does not. These results suggest that initiation involves interactions between the dnaA and dnaB products.  相似文献   

11.
Plasmid R100 and a number of its derivatives were able to suppress the temperature sensitivity of strains carrying different alleles of the dnaB gene of Escherichia coli K-12. R100drd-l and pAR132 were able to rescue a strain carrying the dnaB266(Am) mutation in the absence of any known amber suppressors. This was taken as evidence for the existence of an R100drd-l dnaB analog function. The R100drd-l dnaB analog was different from those of bacteriophages P1 and P7 in that it was able to support the growth of bacteriophage lambda in a dnaB266(Am) background. The dnaB analog was also shown to be thermosensitive. The structural gene for this protein lies within the EcoRI fragment D of R100drd-l.  相似文献   

12.
The lambda O and P gene products are required for the initiation of lambda DNA replication. In order to study the biochemistry of this process, we have constructed plasmids that carry the lambda O gene, P gene, and half of the O gene coding for the amino-terminal half of the O protein. Each is under the control of the inducible lambda promoter, PL. We have purified these three proteins from induced cells carrying the plasmids. Our results show that the amino-terminal portion of the O protein binds to the lambda origin of replication in a manner similar to the intact lambda O protein, demonstrating that the amino-terminal portion of O protein contains the DNA binding domain. Using chromatographic procedures, we have isolated a complex of lambda O and P proteins with lambda dv DNA. The amino-terminal portion of the O protein does not complex with P protein under the same conditions. This suggests that the specificity of the lambda O protein for P protein resides in the carboxyl-terminal half of the lambda O protein. Our results also show that, while the intact O protein is active in in vitro replication of lambda dv plasmid DNA, the amino-terminal portion of the O protein is inactive and is a competitive inhibitor of the lambda O protein in this reaction. These results confirm previous genetic observations that were interpreted as indicating a bifunctional structure for the lambda O protein with the amino-terminal domain recognizing the lambda origin of replication and the carboxyl-terminal domain interacting with the lambda P protein.  相似文献   

13.
dnaB protein of Escherichia coli is an essential replication protein. A missense mutant has been obtained which results in replacement of an arginine residue with cysteine at position 231 of the protein (P. Shrimankar, L. Shortle, and R. Maurer, unpublished data). This mutant displays a dominant-lethal phenotype in strains that are heterodiploid for dnaB. Biochemical analysis of the altered form of dnaB protein revealed that it was inactive in replication in several purified enzyme systems which involve specific and nonspecific primer formation on single-stranded DNAs, and in replication of plasmids containing the E. coli chromosomal origin. Inactivity in replication appeared to be due to its inability to bind to single-stranded DNA. The altered dnaB protein was inhibitory to the activity of wild type dnaB protein in replication by sequestering dnaC protein which is also required for replication. By contrast, it was not inhibitory to dnaB protein in priming of single-stranded DNA by primase in the absence of single-stranded DNA binding protein. Sequestering of dnaC protein into inactive complexes may relate to the dominant-lethal phenotype of this dnaB mutant.  相似文献   

14.
dnaB125, a dnaB nonsense mutation   总被引:3,自引:1,他引:2       下载免费PDF全文
A temperature-sensitive dnaB mutation, dnaB125, was shown to be a suppressed amber mutation. The effects of inserting different amino acids at the mutated site via amber suppressors were examined for both Escherichia coli and bacteriophage gamma growth. In addition, the dnaB125 amber allele was shown to be different from the previously described dnaB amber allele, dnaB266. The extent of residual deoxyribonucleic acid synthesis observed in a supF(Ts) dnaB125 strain at high temperature revealed that the dnaB protein was present in excess and that deoxyribonucleic acid synthesis could continue for several generation equivalents without further production of dnaB protein.  相似文献   

15.
Based on previous in vivo genetic analysis of bacteriophage lambda growth, we have developed two in vitro lambda DNA replication systems composed entirely of purified proteins. One is termed 'grpE-independent' and consists of supercoiled lambda dv plasmid DNA, the lambda O and lambda P proteins, as well as the Escherichia coli dnaK, dnaJ, dnaB, dnaG, ssb, DNA gyrase and DNA polymerase III holoenzyme proteins. The second system includes the E.coli grpE protein and is termed 'grpE-dependent'. Both systems are specific for plasmid molecules carrying the ori lambda DNA initiation site. The major difference in the two systems is that the 'grpE-independent' system requires at least a 10-fold higher level of dnaK protein compared with the grpE-dependent one. The lambda DNA replication process may be divided into several discernible steps, some of which are defined by the isolation of stable intermediates. The first is the formation of a stable ori lambda-lambda O structure. The second is the assembly of a stable ori lambda-lambda O-lambda P-dnaB complex. The addition of dnaJ to this complex also results in an isolatable intermediate. The dnaK, dnaJ and grpE proteins destabilize the lambda P-dnaB interaction, thus liberating dnaB's helicase activity, resulting in unwinding of the DNA template. At this stage, a stable DNA replication intermediate can be isolated, provided that the grpE protein has acted and/or is present. Following this, the dnaG primase enzyme recognizes the single-stranded DNA-dnaB complex and synthesizes RNA primers. Subsequently, the RNA primers are extended into DNA by DNA polymerase III holoenzyme. The proposed model of the molecular series of events taking place at ori lambda is substantiated by the many demonstrable protein-protein interactions among the various participants.  相似文献   

16.
The bacteriophage lambda P protein promoters replication of the phage chromosome by recruiting a key component of the cellular replication machinery to the viral origin. Specifically, P protein delivers one or more molecules of Escherichia coli DnaB helicase to a nucleoprotein structure formed by the lambda O initiator at the lambda replication origin. Using purified proteins, we have examined the features of the pivotal host virus interaction between P and DnaB. These two proteins interact in vitro to form a P.DnaB protein complex that can be resolved by sedimentation or by chromatography on DEAE-cellulose from the individual free proteins. The sedimentation coefficient of the P.DnaB complex, 13 S, suggests a size larger than that of free DnaB hexamer (Mr = 313,600). The P.DnaB complex isolated by glycerol gradient sedimentation contains approximately three protomers of P/DnaB hexamer, consistent with a molecular weight of 393,000. The isolated P.DnaB complex functions in vitro in the initiation of lambda DNA replication. Interaction of P with DnaB strongly suppressed both the intrinsic DNA-dependent ATPase activity of DnaB, as well as the capacity of DnaB to assist E. coli primase in the general priming reaction. Formation of a P.DnaB protein complex also blocked DnaB from functioning in the initiation of E. coli DNA replication in vitro. The physical and functional properties of lambda P protein suggest that it is a viral analogue of the E. coli DnaC replication protein. Like P, DnaC also binds to DnaB (Wickner, S., and Hurwitz, J. (1975) Proc. Natl. Acad. Sci. U. S. A. 72, 921-925), but unlike P, DnaC stimulates DnaB-mediated general priming. When viral P and bacterial DnaC replication proteins were placed in direct competition with one another for binding to DnaB, the viral protein was clearly predominant. For example, a 5-fold molar excess of DnaC protein only partially reversed the inhibitory effect of P on general priming. Furthermore, when a preformed DnaC.DnaB protein complex was incubated briefly with P protein, it was readily converted into a P.DnaB protein complex and the bulk of the bound DnaC was released as free protein. It is likely that the capacity of the lambda P protein to outcompete the analogous host protein for binding to the bacterial DnaB helicase is the critical molecular event enabling infecting phage to recruit cellular replication proteins required for initiation of DNA synthesis at the viral origin.  相似文献   

17.
A dnaB-like protein of Pseudomonas aeruginosa.   总被引:1,自引:0,他引:1       下载免费PDF全文
A dnaB-like protein from P. aeruginosa was purified to near homogeneity using as an assay the immunoprecipitation by E. coli dnaB antiserum in a solid-phase. In the chromatographic characteristics including the affinity to immobilized ATP the dnaB-like protein of P. aeruginosa is similar to the dnaB protein of E. coli with the exception that it does not bind to heparin-Sepharose. The dnaB-like protein has a native molecular weight of about 320,000 as determined by glycerol gradient sedimentation. It consists of several identical subunits of molecular weight of 56,000 as measured in a denaturing SDS gel. Associated with the enzyme is a DNA-dependent ATPase- and helicase activity. The dnaB-like protein is similar to the E. coli dnaB protein with regard to the binding of ATP gamma S and the formation of a ternary complex consisting of the enzyme, ATP gamma S, and phi X174 DNA. However, the enzyme of P. aeruginosa is inactive in a phi X174 DNA-dependent in vitro dnaB complementation assay using an E. coli dnaBts extract.  相似文献   

18.
Using a polyclonal rabbit antiserum against recombinant mouse lambda 5 protein, we determined that the pre-B cell specific mouse lambda 5 gene encodes a 22-kDa protein. The lambda 5 protein, which is related to conventional Ig lambda L chain proteins forms a complex with Ig mu H chain protein and an as yet unidentified 16-kDa protein (p16) in mu+ pre-B cell lines carrying a functionally rearranged VH-DH-JH allele. In pre-B cell lines which carry DH-JH rearrangements and do not express mu H chain protein, lambda 5 protein is associated with p16. Thus the expression of lambda 5 protein precedes the expression of intact mu H chain protein. This suggests the existence of developmentally regulated protein complexes involving the Ig L chain-like protein lambda 5 and p16 in mu- pre-B cells; lambda 5, p16, and Ig H chain protein in mu+ pre-B cells and Ig H chain and conventional Ig L chain proteins in B cells and plasma cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号