首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although cleavage of peptides at sites marked by paired basic amino acids is a common feature of prohormone processing, little is known about the properties of endoprotease(s) responsible for cleavage of the precursor. To examine the cleavage specificity of a processing endoprotease, we have altered the Lys-Arg cleavage site of human prorenin to Arg-Arg, Lys-Lys and Arg-Lys by site-directed mutagenesis, and expressed the native and mutated precursors in mouse pituitary AtT-20 cells which are known to process foreign prohormones, including prorenin, at paired basic sites during the regulated secretory process. All native and mutated human prorenins were sorted into the regulated secretory pathway. The mutated precursor with Arg-Arg instead of the Lys-Arg native pair was processed at about half the efficiency of the native one, while the Lys-Lys and Arg-Lys mutants were not processed. Rat prorenin, which naturally has a Lys-Lys pair, was not processed in the cells. In addition, mouse Ren2 prorenin, which has a Ser residue next to the Lys-Arg pair, but not mouse Ren1 prorenin, which has a Pro residue next to the pair, was processed. These results suggest that the Arg residue at the COOH side of the basic pair is essential for cleavage of prorenins by a processing enzyme during the regulated secretory process in AtT-20 cells, although the NH2-side Lys residue also plays a role. The results also demonstrate that the processing enzyme cannot cleave the Arg-Pro peptide bond.  相似文献   

2.
Many neuroendocrine precursor proteins, such as proopiomelanocortin (POMC), are cleaved in a tissue specific manner at distinct pairs of basic amino acids. Elucidating the specificity of the prohormone endoprotease(s) is essential to understanding cleavage specificity. However, isolation of these enzymes has been difficult, due to the inability to distinguish authentic maturation enzyme from the many other trypsin-like activities present in tissue homogenates. Recently, a "signature" of the insulin cell endoprotease(s) was defined in vivo by assessing the processing of a series of mutant cleavage sites in a model prohormone, mouse POMC (mPOMC) (Thorne, B. A., and Thomas, G. (1990) J. Biol. Chem. 265, 8436-8443. To investigate mechanisms of tissue-specific processing, we sought to identify the endoprotease signature of a cell having a processing phenotype distinct from insulinoma cells. In this report, the cleavage site specificity of the endoprotease(s) expressed in bovine adrenal chromaffin cells is examined. High levels of mPOMC (1.6 pmol/10(6) cells) were expressed in these cells using a vaccinia virus vector, and the precursor was targeted to the regulated secretory pathway. Analysis of POMC-derived peptides revealed that chromaffin cells processed the prohormone to a set of peptides highly similar to anterior pituitary corticotrophs, including adrenocorticotropin hormone (ACTH) and beta-lipotropin, gamma-lipotropin, and beta-endorphin. This processing contrasted with the pattern of cleavage site utilization in Rin m5F insulinoma cells, which more closely resembled that of the intermediate pituitary melanotrophs. However, the processing preference for the sequences of pairs of basic amino acids (as tested using the entire series of mutant cleavage sites; -LysArg- (native), -ArgArg-, -ArgLys-, -LysLys-, -HisArg-, -MetArg- at the ACTH/beta-lipotropin junction and -LysLys- (native), -LysArg-, -ArgArg-, -ArgLys- in beta-endorphin) was the same in both insulinoma and adrenal chromaffin cells, suggesting recognition and cleavage by similar enzymes in both cell types. The cell-specific processing of mPOMC may thus result from expression of a common core set of processing enzymes and factors unique to each cell type affecting the enzyme accessibility to precursor cleavage sites.  相似文献   

3.
Proopiomelanocortin (POMC) is a neuroendocrine precursor protein which is processed at paired basic amino acids in a tissue-specific manner. To study this phenomenon, a vaccinia virus recombinant, which directs the synthesis of mouse POMC (VV:mPOMC) was constructed and used to infect epithelial (BSC-40) and endocrine (Rin m5F) cell lines. Bona fide mPOMC was produced in both cell types and beta-endorphin immunoreactivity was secreted in a nonregulated manner from BSC-40 cells and in a regulated manner from Rin m5F cells. Although the precursor was not cleaved to smaller beta-MSH or beta-endorphin immunoreactive peptides in BSC-40 cell extracts, Rin m5F cells produced primarily authentic gamma-lipotropin and des-acetyl beta-endorphin. Furthermore, production of these peptides was restricted to the regulated secretory pathway in Rin m5F cells. Site-directed mutagenesis was then used to change the inefficiently recognized Lys-Lys potential cleavage site near the carboxyl terminus of beta-endorphin to Lys-Arg. Expression of the mutant precursor in Rin m5F cells resulted in the synthesis of both des-acetyl beta-endorphin and beta-endorphin.  相似文献   

4.
Production of active enkephalin peptides requires proteolytic processing of proenkephalin at dibasic Lys-Arg, Arg-Arg, and Lys-Lys sites, as well as cleavage at a monobasic arginine site. A novel “prohormone thiol protease” (PTP) has been demonstrated to be involved in enkephalin precursor processing. To find if PTP is capable of cleaving all the putative cleavage sites needed for proenkephalin processing, its ability to cleave the dibasic and the monobasic sites within the enkephalin-containing peptides, peptide E and BAM-22P (bovine adrenal medulla docosapeptide), was examined in this study. Cleavage products were separated by HPLC and subjected to microsequencing to determine their identity. PTP cleaved BAM-22P at the Lys-Arg site between the two basic residues. The Arg-Arg site of both peptide E and BAM-22P was cleaved at the NH2-terminal side of the paired basic residues to generate [Met]-enkephalin. Furthermore, the monobasic arginine site was cleaved at its NH2-terminal side by PTP. These findings, together with previous results showing PTP cleavage at the Lys-Lys site of peptide F, demonstrate that PTP possesses the necessary specificity for all the dibasic and monobasic cleavage sites required for proenkephalin processing. In addition, the unique specificity of PTP for cleavage at the NH2-terminal side of arginine at dibasic or monobasic sites distinguishes it from many other putative prohormone processing enzymes, providing further evidence that PTP appears to be a novel prohormone processing enzyme.  相似文献   

5.
Many small peptide hormones are synthesized as larger precursors in which the mature hormone sequence is flanked by pairs of basic amino acids. These precursors often undergo extensive post-translational modifications; a critical step in this process is proteolytic excision of the hormone at the paired basic residues. To determine the role of paired basic amino acids as recognition signals for cleavage by processing enzymes, we investigated the heterologous expression of prosomatostatin (the pro-somatotropin release inhibiting factor (pro-SRIF). Pro-SRIF is one of the simplest peptide hormone precursors, possessing a single copy of the 14-residue SRIF peptide at its carboxyl terminus preceded by the least common pair of basic amino acids, Arg-Lys. Employing site-directed mutagenesis, we altered the paired basic cleavage site to the more common Arg-Arg and Lys-Arg residues. The native and mutated precursors were expressed in rat pituitary GH3 cells and mouse 3T3 cells using a retroviral vector. Alteration of the paired basic residues had no effect on the specificity of proteolytic cleavage as both the native and mutant precursors were processed with 70 to 80% efficiency in GH3 cells. Surprisingly, when the mutant pro-SRIFs were expressed in 3T3 cells, which do not process the native precursor, the Arg-Arg and Lys-Arg precursors were processed with 16 and 20% efficiency, respectively. The role of an acidic compartment in mediating pro-SRIF cleavage was also investigated using low concentrations of the lysosomotrophic drug Chloroquine. Twenty-five microM Chlorquine completely inhibited pro-SRIF cleavage and intracellular storage; the unprocessed precursor was secreted into the medium. We conclude that (i) exposure to an acidic compartment is required for pro-SRIF maturation, and (ii) the conformation of the processing site, rather than the composition of the basic amino acids, defines cleavage specificity by prohormone processing enzymes.  相似文献   

6.
Many peptide hormones are produced from larger precursors by endoproteolysis at pairs of basic amino acids (e.g. Lys-Arg and Arg-Arg) within the regulated secretory pathway in endocrine cells. However, many other secretory and membrane proteins appear to be produced from precursors through cleavage at multiple, rather than paired, basic residues within the constitutive secretory pathway in non-endocrine cells. By surveying various precursors processed constitutively, we noticed that most of them have the consensus sequence, Arg-X-Lys/Arg-Arg (RXK/RR), at the cleavage site. When expressed in endocrine and non-endocrine cells, a precursor with the RXKR sequence was cleaved in both types of cells, whereas that with the Lys-Arg pair was cleaved only in the endocrine cells. When the RXKR precursor was coexpressed with furin and PC3, both of which are mammalian homologues of the yeast precursor-processing endoprotease Kex2, in non-endocrine cells, enhancement of the precursor cleavage by furin but not by PC3 was observed. By contrast, when the Lys-Arg precursor was coexpressed with the two mammalian proteases in endocrine cells with no endogenous processing activity at dibasic sites, it was cleaved only by PC3. These results indicate that the basic pair and the RXK/RR sequence are the signals for precursor cleavages catalyzed by PC3 within the regulated secretory pathway and by furin within the constitutive pathway, respectively.  相似文献   

7.
Many peptide hormones and neuropeptides are produced from larger, inactive precursors through endoproteolysis at sites usually marked by paired basic residues (primarily Lys-Arg and Arg-Arg), or occasionally by a monobasic residue (primarily Arg). Based upon data concerning processing of prorenin and its mutants around the native Lys-Arg cleavage site expressed in mouse pituitary AtT-20 cells, we present the following sequence rules that govern mono-arginyl cleavages: (a) a basic residue at the fourth (position -4) or the sixth (position -6) residue upstream of the cleavage site is required, (b) at position -4, Arg is more favorable than Lys, and (c) at position 1, a hydrophobic aliphatic residue is not suitable. These rules are compatible with those proposed by comparison of precursor sequences around mono-arginyl cleavage sites. We also provide evidence that precursor cleavages at mono-arginyl and dibasic sites can be catalyzed by the same Kex2-like processing endoprotease, PC1/PC3.  相似文献   

8.
Pro-opiomelanocortin (adrenocorticotropin/endorphin prohormone) is processed to yield active hormones by cleavages at paired basic amino acid residues. In this study, an enzyme that specifically cleaves at the paired basic residues of this prohormone has been purified from bovine pituitary intermediate lobe secretory vesicles, the intracellular processing site of proopiomelanocortin. This enzyme, named pro-opiomelanocortin converting enzyme, has been characterized as a glycoprotein of Mr approximately 70,000. It has an apparent isoelectric point between 3.5 and 4.0. The pH optimum of the pro-opiomelanocortin converting enzyme is between 4 and 5, but the enzyme is highly active at the intravesicular pH of 5.1-5.6. The enzyme specifically cleaved the Lys-Arg pairs of pro-opiomelanocortin to yield Mr = to 21,000-23,000 ACTH, beta-lipotropin, Mr 13,000 and 4,500 ACTH, beta-endorphin, and a Mr = 16,000 NH2-terminal glycopeptide, the products synthesized by the pituitary intermediate lobe in situ. NH2- and COOH-terminal analysis of the products indicated that the pro-opiomelanocortin converting enzyme cleaves the peptide bond either between the Lys and Arg or on the carboxyl side of the Arg at Lys-Arg pairs of pro-opiomelanocortin. The intracellular localization, pH optimum, and cleavage specificity of the enzyme suggest that it may function as a pro-opiomelanocortin processing enzyme in the pituitary intermediate lobe in vivo.  相似文献   

9.
Regulatory peptides are synthesized as part of larger precursors that are subsequently processed into the active substances. After cleavage of the signal peptide, further proteolytic processing occurs predominantly at basic amino acid residues. Rules have been proposed in order to predict which putative proteolytic processing sites are actually used, but these rules have been established for vertebrate peptide precursors and it is unclear whether they are also valid for insects. The aim of this paper is to establish the validity of these rules to predict proteolytic cleavage sites at basic amino acids in insect neuropeptide precursors. Rules describing the cleavage of mono- and dibasic potential processing sites in insect neuropeptide precursors are summarized below. Lys-Arg pairs not followed by an aliphatic or basic amino acid residue are virtually always cleaved in insect regulatory peptide precursors, but cleavages of Lys-Arg pairs followed by either an aliphatic or a basic amino acid residue are ambiguous, as is processing at Arg-Arg pairs. Processing at Arg-Lys pairs has so far not been demonstrated in insects and processing at Lys-Lys pairs appears very rare. Processing at single Arg residues occurs only when there is a basic amino acid residue in position -4, -6, or -8, usually an Arg, but Lys or His residues work also. Although the current number of such sites is too limited to draw definitive conclusions, it seems plausible that cleavage at these sites is inhibited by the presence of aliphatic residues in the +1 position. However, cleavage at single Arg residues is ambiguous. When several potential cleavage sites overlap the one most easily cleaved appears to be processed. It cannot be excluded that some of the rules formulated here will prove less than universal, as only a limited number of cleavage sites have so far been identified. It is likely that, as in vertebrates, ambiguous processing sites exist to allow differential cleavage of the same precursor by different convertases and it seems possible that the precursors of allatostatins and PBAN are differentially cleaved in different cell types. Arch. Insect Biochem. Physiol. 43:49-63, 2000.  相似文献   

10.
Targeting and Processing of Pro-Opiomelanocortin in Neuronal Cell Lines   总被引:2,自引:0,他引:2  
Pro-opiomelanocortin (POMC) is the precursor to several pituitary hormones including adrenocorticotropic hormone and beta-endorphin (beta-END). POMC is also expressed in the brain, predominantly in discrete neuronal cell populations of the hypothalamus. In the pituitary and brain, POMC undergoes tissue-specific proteolysis to release different bioactive peptides. POMC processing in neuronal cell lines was studied after infection of PC12 and Neuro2A cells with a recombinant retrovirus carrying the porcine POMC cDNA. Our results indicate that both cell lines synthesize and target POMC to the regulated secretory pathway. Only the Neuro2A cells, however, can achieve proteolytic processing of POMC. Chromatographic and immunological characterization of the POMC-related material showed that beta-lipotropin (beta-LPH) and nonacetylated beta-END(1-31) are major maturation products of POMC in these cells. Release of both beta-LPH and beta-END(1-31) from infected Neuro2A cells can be stimulated by secretagogues in a calcium-dependent manner. Taken together, our results suggest that the cellular machinery of Neuro2A cells can recognize a foreign prohormone, target it to neurosecretory vesicles, process it into biologically active peptides, and secrete it in a manner characteristic to peptidergic neurons.  相似文献   

11.
This study demonstrates the presence of boc-Gln-Arg-Arg-MCA cleaving activity in bovine chromaffin granule membranes that resembles yeast Kex2 proteolytic activity. The chromaffin granule boc-Gln-Arg-Arg-MCA cleaving activity, like Kex2 proteolytic activity, shows calcium dependence, optimum activity at pH 7.5-8.2, inhibition by serine protease inhibitors, and preference for cleavage at the COOH-terminal side of Arg-Arg and Lys-Arg, over Lys-Lys, paired basic residues. Potent inhibition by the active-site directed inhibitor [D-Tyr]-Glu-Phe-Lys-Arg-CK (20 microM) provided further evidence for dibasic residue cleavage site specificity. These results are the first report of endogenous mammalian Kex2-like proteolytic activity that may be related to PC1/PC3 and PC2 enzymes, the newly discovered mammalian homologues of Kex2 protease. It will be important to determine the role of this Kex2-like proteolytic activity in processing the precursors of adrenal medullary neuropeptides.  相似文献   

12.
Alpha-melanocyte-stimulating hormone (alpha-MSH) is a neuropeptide expressed in pituitary and brain that is known to regulate energy balance, appetite control, and neuroimmune functions. The biosynthesis of alpha-MSH requires proteolytic processing of the proopiomelanocortin (POMC) precursor. Therefore, this study investigated the in vivo role of the prohormone convertase 2 (PC2) processing enzyme for production of alpha-MSH in PC2-deficient mice. Specific detection of alpha-MSH utilized radioimmunoassay (RIA) that does not crossreact with the POMC precursor, and which does not crossreact with other adrenocorticotropin hormone (ACTH) and beta-endorphin peptide products derived from POMC. alpha-MSH in PC2-deficient mice was essentially obliterated in pituitary, hypothalamus, cortex, and other brain regions (collectively), compared to wild-type controls. These results demonstrate the critical requirement of PC2 for the production of alpha-MSH. The absence of alpha-MSH was accompanied by accumulation of ACTH, ACTH-containing imtermediates, and POMC precursor. ACTH was increased in pituitary and hypothalamus of PC2-deficient mice, evaluated by RIA and reversed-phase high pressure liquid chromatography (RP-HPLC). Accumulation of ACTH demonstrates its role as a PC2 substrate that can be converted for alpha-MSH production. Further analyses of POMC-derived intermediates in pituitary, conducted by denaturing western blot conditions, showed accumulation of ACTH-containing intermediates in pituitaries of PC2-deficient mice, which implicate participation of such intermediates as PC2 substrates. Moreover, accumulation of POMC was observed in PC2-deficient mice by western blots with anti-ACTH and anti-beta-endorphin. In addition, increased beta-endorphin1-31 was observed in pituitary and hypothalamus of PC2-deficient mice, suggesting beta-endorphin1-31 as a substrate for PC2 in these tissues. Overall, these studies demonstrated that the PC2 processing enzyme is critical for the in vivo production of alpha-MSH in pituitary and brain.  相似文献   

13.
Different tetrapeptides of general formula L-Ala-X-X-Gly, possessing a basic doublet in the second and third position (X = Arg or Lys), have been synthesized as free or N-acetylated molecules. The chemical reactivity of the arginine guanidino group and of the lysine epsilon-amino group were studied using respectively the Sakaguchi and the ortho-diacetylbenzene reactions, in the tetrapeptides as well as in related molecules. In both cases, the colour yield is markedly influenced by the length of the polypeptide chain and by the relative positions of the arginine and lysine residues, suggesting the occurrence of intramolecular bonds within the tetrapeptide molecule. Tryptic hydrolysis of the tetrapeptides was followed by evaluating the amino acids or peptides which appear to be specific for the different possible cleavages at the arginyl or at the lysyl bonds. The susceptibility to trypsin of the carboxylic group of the second basic amino acid decreases progressively in the order Lys-Arg greater than Arg-Arg much greater than Lys-Lys greater than Arg-Lys, which shows a fair correlation with the intra-cellular cleavage of the bonds observed during the processing of preproteins of of the precursors of several physiologically active peptides.  相似文献   

14.
In murine skin, after depilation-induced anagen, there was a differential spatial and temporal expression of pro-opiomelanocortin (POMC) mRNA, of the POMC-derived peptides beta-endorphin, ACTH, beta-MSH, and alpha-MSH, and of the prohormone convertases PC1 and PC2 in epidermal and hair follicle keratinocytes and in the cells of sebaceous units. Using a combination of in situ hybridization histochemistry and immunohistochemistry, we found cell-specific variations in the expression of POMC mRNA that were consistent with immunoreactivities for POMC-derived peptides. Cells that contained POMC peptide immunoreactivity (IR) also expressed POMC mRNA, and where the IR increased there was a parallel increase in mRNA. The levels of PC1-IR and PC2-IR also showed cell-specific variations and were present in the same cells that contained the POMC peptides. Based on the cleavage specificities of these convertases and on the spatial and temporal expression of the convertases and of ACTH, beta-endorphin, beta-MSH, and alpha-MSH, we can infer that the activities of PC1 and PC2 are responsible for the cell-specific differential processing of POMC in murine skin.  相似文献   

15.
A putative proenkephalin-cleaving enzyme (PCE) extracted from bovine adrenal chromaffin granules was purified with soybean trypsin inhibitor high-performance affinity chromatography. The 12,600-fold purified enzyme was maximally active at pH 8.0. The enzyme was completely inhibited with lima bean trypsin inhibitor (0.1 mg/ml), soybean trypsin inhibitor (0.1 mg/ml), and p-(chloromercuri)benzenesulfonic acid (1.0 mM), indicating PCE is a serine protease with cysteine residues likely to be involved in its structure or activity. It exhibited significant autoproteolysis without specific substrates present. The substrate specificity and kinetic constants with the enkephalin-containing (EC) peptides Leu-9 and proenkephalin Peptides B, E, and F as substrates were studied. The cleavage patterns were substantially different than with trypsin digestion. PCE specifically recognized the paired basic amino acid residues and predominantly cleaved the peptide bonds between Lys and Arg sites and peptide bonds after Lys-Lys and Arg-Arg sites. Different Km and Vmax values for the different Lys-Arg sites indicate sequences in addition to the paired basic residues can affect enzyme activity. Also, the lower Km and Vmax of Peptide E suggest a higher affinity for this peptide but much slower cleavage. The C-terminally located Lys-Arg site appears responsible for this high affinity. Based on these observations, we propose the following: (a) the primary structure of these peptides contains enough information to be processed correctly by PCE and (b) PCE may be regulated by pH and Peptide E to prevent extensive processing of the intermediate EC peptides which are the major opioid peptides found in the adrenal chromaffin granules.  相似文献   

16.
The endoproteolytic activity previously detected in rat intestinal mucosal extracts (Beinfeld M., Bourdais, J., Kuks, P., Morel, A., and Cohen, P. (1989) J. Biol. Chem. 264, 4460-4465), was purified to homogeneity as a 65-kDa molecular species. This putative proprotein-processing enzyme cleaves the peptide bond on the carboxyl side of a single arginine residue in hepta-[Leu62-Gln-Arg-Ser-Ala-Asn-Ser68] or trideca-[Asp56-Glu-Met-Arg-Leu-Glu-Leu-Gln-Arg-Ser-Ala-Asn-+ ++Ser68] peptides, reproducing the prosomatostatin sequence around Arg64, the locus for endoproteolytic release of either somatostatin-28 or its NH2-terminal fragment, somatostatin-28-(1-12), from their common precursor. This enzyme exhibits a strict selectivity for arginyl residues, as demonstrated with related substrates, and did not cleave at lysyl residues. Moreover, only arginyl residues belonging to peptides of the prosomatostatin family were cleaved, since no hydrolysis of peptides from other prohormones was detected. In addition, the arginine residue situated at position -5 on the NH2-terminal side of Arg64 not only did not function as a cleavage locus, but had no effect on the overall cleavage kinetics of the prosomatostatin-(56-68) peptide substrate. This enzyme also cleaved, but with much less efficiency, the peptide bond on the carboxyl side of an arginine in peptides containing either an Arg-Lys or a Lys-Arg doublet corresponding to prohormone cleavage sites. This enzyme was insensitive to divalent cation chelators, was completely inhibited by aprotinin and leupeptin, and was somewhat inhibited by other serine-protease inhibitors. It is concluded that this endoprotease is a serine protease and could be involved in prohormone or proprotein post-translational processing at single arginine cleavage sites.  相似文献   

17.
A cDNA clone encoding the human motilin precursor was isolated from an intestinal library using synthetic oligonucleotide probes. The predicted amino acid sequence indicates that the motilin precursor consists of 115 amino acids and includes a 25-residue N-terminal signal peptide followed by the 22-amino-acid motilin sequence and a long, 68-residue C-terminal peptide. The amino acid sequence of human motilin predicted from the cDNA sequence is identical to its porcine counterpart, which has been determined by protein sequencing. Proteolytic processing of promotilin to motilin occurs at the sequence, Lys-Lys, this being the first reported instance of processing occurring at a pair of Lys residues. In other precursors it occurs at Lys-Arg, Arg-Arg, Arg, or very rarely Lys.  相似文献   

18.
We have recently demonstrated that the Arg-X-Lys/Arg-Arg sequence is a signal for precursor cleavage catalyzed by furin, a mammalian homologue of the yeast precursor-processing endoprotease Kex2, within the constitutive secretory pathway. In this study, we further examined sequence requirements for the constitutive precursor cleavage by expression of various prorenin mutants with amino acid substitutions around the native Lys-Arg cleavage site in Chinese hamster ovary cells. The results delineate the following sequence rules that govern the constitutive precursor cleavage. (a) A basic residue (Lys or Arg) at the 4th (position -4) or 6th (position -6) residue upstream of the cleavage site besides basic residues at positions -1 and -2 is necessary. (b) At position -2, a Lys residue is more preferable than Arg. (c) At position -4, an Arg residue is more preferable than Lys. (d) At position 1, a hydrophobic aliphatic amino acid is not suitable.  相似文献   

19.
We present a study of the cleavage specificity of IRCM-serine protease 1 from frozen porcine pituitary neurointermediate lobes using polypeptide substrates representing different segments of human pro-opiomelanocortin. Using 125I-labeled ACTH(11-24) and a 125I-labeled model beta-lipotropin (beta-LPH) peptide, the preference of this protease for cleavage C-terminal to the pairs of basic residues Lys-Arg and Lys-Lys was clearly seen. This study was extended to larger unlabeled natural human polypeptides including ACTH(1-39), beta-LPH(1-89), and the N-terminal glycopeptide (1-76), which are known to serve as substrates for further cleavage in vivo. In these substrates IRCM-serine protease 1 cleaved C-terminal to all pairs of basic residues known to be cleaved in vivo. In addition, the enzyme cleaved between two pairs of basic amino acids found in NT(1-76) which are also known to be cleaved in vivo. Many potential "tryptic-like" cleavage sites were not cleaved by the enzyme. However, IRCM-serine protease 1 cleaved C-terminal to Phe-Arg in the three melanocyte-stimulating hormone sequences of pro-opiomelanocortin. In order to better understand the physiological role of IRCM-serine protease 1, differential centrifugation was used to study the subcellular distribution of the enzyme from porcine pituitary anterior lobe homogenates. We present evidence that the active enzyme form, isolated from the subcellular fractions, possesses a similar molecular architecture as the enzyme isolated from frozen tissue (Mr 38,000 catalytic domain linked via disulfide bridge(s) to another polypeptide chain(s) to form an Mr 88,000 monomeric structure). The majority of IRCM-serine protease activity is found to be associated with small vesicles (150,000 X g for 5 h) of as yet undetermined nature. In addition, a latent activity was found to be associated with a 27,000 X g (15 min) pellet containing the majority of mature secretory granules. If IRCM-serine protease 1 participates in prohormone maturation in vivo, we propose a model in which this protease is present in an enzymatically active form in small vesicles, possibly within clathrin-coated structures (prosecretory granules) which are then transformed to mature secretory granules by a process which would also inactivate most of the enzyme.  相似文献   

20.
Y P Loh  W W Tam 《FEBS letters》1985,184(1):40-43
The prohormone, pro-opiomelanocortin (POMC) is synthesized on ribosomes, subsequently routed to the Golgi apparatus and finally packaged into secretory granules where it is processed to various biologically active hormones (alpha-melanotropin, adrenocorticotropin, beta-endorphin and beta-lipotropin). We report here that in frog and mouse pars intermedia cells, newly synthesized [3H]Arg-labeled POMC is associated with the secretory granule membrane prior to processing. This association with the secretory granule membrane may be related to the intracellular transport and packaging of POMC and/or the facilitation of processing of the prohormone within the organelle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号