共查询到16条相似文献,搜索用时 15 毫秒
1.
T. Nakamura T. Ohmoto D. Hirata E. Tsuchiya T. Miyakawa 《Molecular & general genetics : MGG》1996,251(2):211-219
Saccharomyces cerevisiae mutants which exhibit phenotypes (calcium resistance and vanadate sensitivity) similar to those of calcineurin-deficient mutants were isolated. The mutants were classified into four complementation groups (crv1,2,3 and4).crv1 was allelic tocnb1, a mutation in the regulatory subunit of calcineurin. The nucleotide sequences ofCRV2 andCRV3 genes which complemented thecrv2 andcrv3 mutations, respectively, are identical to those ofBCK1/SLK1/SKC1/SSP31 andMPK1/SLT2, respectively, which are both involved in the MAP kinase cascade. A calcineurin-deletion mutation (cnb1), which by itself has no detectable effect on growth and morphology, enhanced some phenotypes (slow growth and morphological abnormality) ofcrv2 andcrv3 mutants. These phenotypes ofcrv2 andcrv3 mutants were partially suppressed by Ca2+ or by overproduction of the calcineurin subunits (Cmp2 and Cnb1). Like the calcineurin-deficient mutant,crv2 andcrv3 mutants were defective in recovery from -factor-induced growth arrest. The defect in recovery of the cnb1 mutant was suppressed by overexpression ofMPK1. These results indicated that the calcineurin-mediated and the Mpk1- (Bck1-) mediated signaling pathways act in parallel to regulate functionally redundant cellular events important for growth. 相似文献
2.
3.
Chen CL Shim MS Chung J Yoo HS Ha JM Kim JY Choi J Zang SL Hou X Carlson BA Hatfield DL Lee BJ 《Biochemical and biophysical research communications》2006,348(4):1296-1301
G-rich is a Drosophila melanogaster selenoprotein, which is a homologue of human and mouse SelK. Subcellular localization analysis using GFP-tagged G-rich showed that G-rich was localized in the Golgi apparatus. The fusion protein was co-localized with the Golgi marker proteins but not with an endoplasmic reticulum (ER) marker protein in Drosophila SL2 cells. Bioinformatic analysis of G-rich suggests that this protein is either type II or type III transmembrane protein. To determine the type of transmembrane protein experimentally, GFP-G-rich in which GFP was tagged at the N-terminus of G-rich, or G-rich-GFP in which GFP was tagged at the C-terminus of G-rich, were expressed in SL2 cells. The tagged proteins were then digested with trypsin, and analyzed by Western blot analysis. The results showed that the C-terminus of the G-rich protein was exposed to the cytoplasm indicating it is a type III microsomal membrane protein. G-rich is the first selenoprotein identified in the Golgi apparatus. 相似文献
4.
Akt is a phospholipid-binding protein and the downstream effector of the phosphoinositide 3-kinase (PI3K) pathway. Akt has three isoforms: Akt1, Akt2, and Akt3. All of these isoforms are expressed in rod photoreceptor cells, but the individual functions of each isoform are not known. In this study, we found that light induces the activation of Akt1. The membrane binding of Akt1 to rod outer segments (ROS) is insulin receptor (IR)/PI3K-dependent as demonstrated by reduced binding of Akt1 to ROS membranes of photoreceptor-specific IR knockout mice. Membrane binding of Akt1 is mediated through its Pleckstrin homology (PH) domain. To determine whether binding of the PH domain of Akt1 to photoreceptor membranes is regulated by light, various green fluorescent protein (GFP)/Akt1-PH domain fusion proteins were expressed in rod photoreceptors of transgenic Xenopus laevis under the control of the Xenopus opsin promoter. The R25C mutant PH domain of Akt1, which does not bind phosphoinositides, failed to associate with plasma membranes in a light-dependent manner. This study suggests that light-dependent generation of phosphoinositides regulates the activation and membrane binding of Akt1 in vivo. Our results also suggest that actin cytoskeletal organization may be regulated through light-dependent generation of phosphoinositides. 相似文献
5.
6.
BRI1-like receptor kinase (BRL1) was identified as an extragenic suppressor of a weak bri1 allele, bri1-5, in an activation-tagging genetic screen for novel brassinosteroid (BR) signal transduction regulators. BRL1 encodes a leucine-rich repeat receptor-like protein kinase (LRR-RLK). Sequence alignment revealed that BRL1 is closely related to BRI1, which is involved in BR perception. Overexpression of a BRL1 cDNA, driven by a constitutive CaMV 35S promoter, recapitulates the bri1-5 suppression phenotypes, and partially complements the phenotypes of a null bri1 allele, bri1-4. Analysis of a BR-specific feedback response gene, CPD, indicates that BRL1 functions in BR signaling. BRL1 expression pattern overlaps with, but is distinct from, that of BRI1. In addition, both the expression level and in vitro kinase autophosphorylation activity of BRL1 are significantly lower than those of BRI1. bri1-5 brl1-1 double mutant plants have enhanced developmental defects relative to bri1-5 mutant plants, revealing that BRL1 plays a partially redundant role with BRI1 in controlling Arabidopsis growth and development. These findings enhance our understanding of functional redundancy and add an additional layer of complexity to RLK-mediated BR signaling transduction in Arabidopsis. 相似文献
7.
Simona John von Freyend Annette Fink Inga Maria Melzer Joachim Clos Martin Wiese 《International journal for parasitology》2010,40(8):969-978
The essential mitogen-activated protein kinase (MAP kinase), LmxMPK4, of Leishmania mexicana is minimally active when purified following recombinant expression in Escherichia coli and was therefore unsuitable for drug screening until now. Using an E. coli protein co-expression system we identified LmxMKK5, a STE7-like protein kinase from L. mexicana, which phosphorylates and activates recombinant LmxMPK4 in vitro. LmxMKK5 is comprised of 525 amino acids and has a calculated molecular mass of 55.9 kDa. The co-expressed, purified LmxMPK4 showed strong phosphotransferase activity in radiometric kinase assays and was confirmed by immunoblot and tandem mass spectrometry analyses to be phosphorylated on threonine 190 and tyrosine 192 of the typical TXY MAP kinase activation motif. The universal protein kinase inhibitor staurosporine reduced the phosphotransferase activity of co-expressed and activated LmxMPK4 in a dose-dependent manner. To our knowledge this is the first time that an in vitro activator of an essential Leishmania MAP kinase was identified and our findings form the basis for the development of drug screening assays to identify small molecule inhibitors of LmxMPK4 in the search for new therapeutic drugs against leishmaniasis. 相似文献
8.
Huiwen Song Jun Pu Lin Wang Lihua Wu Jianmin Xiao Qigong Liu Jun Chen Min Zhang Yang Liu Mingke Ni Jinggang Mo Yunliang Zheng Deli Wan XiongJiu Cai Yaping Cao Weiyi Xiao Lei Ye Enyuan Tu Zhihai Lin Jianxin Wen Xiaoling Lu Jian He Yi Peng Jing Su Heng Zhang Yongxiang Zhao Meihua Lin Zhiyong Zhang 《Autophagy》2015,11(8):1308-1325
Recent studies have shown that the phosphorylation and dephosphorylation of ULK1 and ATG13 are related to autophagy activity. Although ATG16L1 is absolutely required for autophagy induction by affecting the formation of autophagosomes, the post-translational modification of ATG16L1 remains elusive. Here, we explored the regulatory mechanism and role of ATG16L1 phosphorylation for autophagy induction in cardiomyocytes. We showed that ATG16L1 was a phosphoprotein, because phosphorylation of ATG16L1 was detected in rat cardiomyocytes during hypoxia/reoxygenation (H/R). We not only demonstrated that CSNK2 (casein kinase 2) phosphorylated ATG16L1, but also identified the highly conserved Ser139 as the critical phosphorylation residue for CSNK2. We further established that ATG16L1 associated with the ATG12-ATG5 complex in a Ser139 phosphorylation-dependent manner. In agreement with this finding, CSNK2 inhibitor disrupted the ATG12-ATG5-ATG16L1 complex. Importantly, phosphorylation of ATG16L1 on Ser139 was responsible for H/R-induced autophagy in cardiomyocytes, which protects cardiomyocytes from apoptosis. Conversely, we determined that wild-type PPP1 (protein phosphatase 1), but not the inactive mutant, associated with ATG16L1 and antagonized CSNK2-mediated phosphorylation of ATG16L1. Interestingly, one RVxF consensus site for PPP1 binding in the C-terminal tail of ATG16L1 was identified; mutation of this site disrupted its association with ATG16L1. Notably, CSNK2 also associated with PPP1, but ATG16L1 depletion impaired the interaction between CSNK2 and PPP1. Collectively, these data identify ATG16L1 as a bona fide physiological CSNK2 and PPP1 substrate, which reveals a novel molecular link from CSNK2 to activation of the autophagy-specific ATG12-ATG5-ATG16L1 complex and autophagy induction. 相似文献
9.
Duda Teresa Venkataraman Venkateswar Krishnan Anuradha Sharma Rameshwar K. 《Molecular and cellular biochemistry》1998,189(1-2):63-70
At present there are two recognized members of the ROS-GC subfamily of membrane guanylate cyclases. They are ROS-GC1 and ROS-GC2. A distinctive feature of this family is that its members are not switched on by the extracellular peptide hormones; instead, they are modulated by intracellular Ca2+ signals, consistent to their linkage with phototransduction. An intriguing feature of ROS-GC1, which distinguishes it from ROS-GC2, is that it has two Ca2+ switches. One switch inhibits the enzyme at micromolar concentrations of Ca2+, as in phototransduction; the other, stimulates. The stimulatory switch, most likely, is linked to retinal synaptic activity. Thus, ROS-GC1 is linked to both phototransduction and the synaptic activity. The present study describes (1) the almost complete structural identity of 18.5 kb ROS-GC1 gene; (2) its structural organization: the gene is composed of 20 exons and 19 introns with classical GT/AG boundaries; (3) the activity of the ROS-GC1 promoter assayed through luciferase reporter in COS cells; and (4) induction of the gene by phorbol ester, a protein kinase C (PKC) activator. The co-presence of PKC and ROS-GC1 in photoreceptors suggests that regulation of the ROS-GC1 gene by PKC might be a physiologically relevant phenomenon. 相似文献
10.
J.Keith McClung Rolf F. Keltzien 《Biochimica et Biophysica Acta (BBA)/General Subjects》1981,678(1):106-114
Native polyacrylamide gels have been used to resolve protein kinase isoenzymes from cultured cells and the protein kinases have been identified by carrying out phosphorylation reactions in the gel. Following electrophoresis, the gels were incubated with histome and [γ-32P]ATP. The gels were then thoroughly washed and dried down, and the protein kinases were located by autoradiography. Protein kinase activity as measured in the gel system was a linear function of cytosol protein concentration up to about 100 μg per channel and incorporation of 32P into histone was time dependent. Three bands of protein kinase activity were resolved in cytosol samples from baby hamster kidney (BHK) fibroblasts. The band with the lowest relative mobility utilized histone IIA or casein equally well as substrate protein whereas bands 2 and 3 demonstrated a clear preference for histone. Bands 2 and 3 displayed a relative mobility in electrophoresis that was identical to that observed for cyclic AMP-dependent protein kinases I and II from rat liver. Treatment of cyctosol samples with cyclic AMP prior to electrophoresis resulted in the disappearance of cyclic AMP-dependent protein kinases from the gel profile. This method was employed to identify bands 2 and 3 as cyclic AMP-dependent protein kinases. The protein kinases in growth-arrested cells were compared with proliferating cells. We have observed a 3.5-fold increase in the activity of Type II protein kinase as the cells arrest growth in G1 phase of the cell cycle. This increase in Type II is correlated with the increase in cells blocked in G1 and a decrease in II Type activity appears to be an early event in permitting cells to leave G1 and resume growth. 相似文献
11.
Wang X Tian QB Okano A Sakagami H Moon IS Kondo H Endo S Suzuki T 《Journal of neurochemistry》2005,92(3):647-659
We cloned a rat BAALC 1-6-8 isoform cDNA (GenBank Accession No. AB073318) that encoded a 22-kDa protein, and identified endogenous BAALC 1-6-8 protein in the brain. The gene was expressed widely in the frontal part of the brain, and the protein was localized to the synaptic sites and was increased in parallel with synaptogenesis. The protein interacted with the alpha, but not beta, subunit of Ca(2+)/calmodulin-dependent protein kinase II (CaMKIIalpha). The interaction occurred between the N-terminal 35-amino-acid region of BAALC 1-6-8 protein and the C-terminal end of the regulatory domain of CaMKIIalpha, which contains alpha isoform-specific sequence. Thus, the interaction may be CaMKIIalpha-specific. We also found that BAALC 1-6-8 protein, as well as CaMKIIalpha, was localized to lipid rafts and that both myristoylation and palmitoylation of BAALC 1-6-8 N-terminal portion were required for targeting of the protein into lipid rafts. These findings suggest that BAALC 1-6-8 protein play a synaptic role at the postsynaptic lipid raft possibly through interaction with CaMKIIalpha. 相似文献
12.
Kawauchi T Chihama K Nishimura YV Nabeshima Y Hoshino M 《Biochemical and biophysical research communications》2005,331(1):50-55
Mode I phosphorylated MAP1B is observed in developing and pathogenic brains. Although Cdk5 has been believed to phosphorylate MAP1B in the developing cerebral cortex, we show that a Cdk5 inhibitor does not suppress mode I phosphorylation of MAP1B in primary and slice cultures, while a JNK inhibitor does. Coincidently, an increase in phosphorylated MAP1B was not observed in COS7 cells when Cdk5 was cotransfected with p35, but this did occur with p25 which is specifically produced in pathogenic brains. Our primary culture studies showed an involvement of Cdk5 in regulating microtubule dynamics without affecting MAP1B phosphorylation status. The importance of regulating microtubule dynamics in neuronal migration was also demonstrated by in utero electroporation experiments. These findings suggest that mode I phosphorylation of MAP1B is facilitated by JNK but not Cdk5/p35 in the developing cerebral cortex and by Cdk5/p25 in pathogenic brains, contributing to various biological events. 相似文献
13.
14.
15.
Sylvain Hanein Mathilde Garcia Lucas Fares-Taie Valérie Serre Yves De Keyzer Thierry Delaveau Isabelle Perrault Nathalie Delphin Sylvie Gerber Alain Schmitt Jean-Marc Masse Arnold Munnich Josseline Kaplan Frédéric Devaux Jean-Michel Rozet 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013