首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since glucose is the main cerebral substrate, we have characterized the metabolism of various 13C glucose isotopomers in rat brain slices. For this, we have used our cellular metabolomic approach that combines enzymatic and carbon 13 NMR techniques with mathematical models of metabolic pathways. We identified the fate and the pathways of the conversion of glucose carbons into various products (pyruvate, lactate, alanine, aspartate, glutamate, GABA, glutamine and CO2) and determined absolute fluxes through pathways of glucose metabolism. After 60 min of incubation, lactate and CO2 were the main end-products of the metabolism of glucose which was avidly metabolized by the slices. Lactate was also used at high rates by the slices and mainly converted into CO2. High values of flux through pyruvate carboxylase, which were similar with glucose and lactate as substrate, were observed. The addition of glutamine, but not of acetate, stimulated pyruvate carboxylation, the conversion of glutamate into succinate and fluxes through succinate dehydrogenase, malic enzyme, glutamine synthetase and aspartate aminotransferase. It is concluded that, unlike brain cells in culture, and consistent with high fluxes through PDH and enzymes of the tricarboxylic acid cycle, rat brain slices oxidized both glucose and lactate at high rates.  相似文献   

2.
Pathways of glutamine metabolism in resting and proliferating rat thymocytes were evaluated by in vitro incubations of freshly prepared or 60-h cultured cells for 1-2 h with [U14C]glutamine. Complete recovery of glutamine carbons utilized in products allowed quantification of the pathways of glutamine metabolism under the experimental conditions. Partial oxidation of glutamine via 2-oxoglutarate in a truncated citric acid cycle to CO2 and oxaloacetate, which then was converted to aspartate, accounted for 76 and 69%, respectively, of the glutamine metabolized beyond the stage of glutamate by resting and proliferating thymocytes. Complete oxidation to CO2 in the citric acid cycle via 2-oxoglutarate dehydrogenase and isocitrate dehydrogenase accounted for 25 and 7%, respectively. In proliferating cells a substantial amount of glutamine carbons was also recovered in pyruvate, alanine, and especially lactate. The main route of glutamine and glutamate entrance into the citric acid cycle via 2-oxoglutarate in both cells is transamination by aspartate aminotransferase rather than oxidative deamination by glutamate dehydrogenase. In the presence of glucose as second substrate, glutamine utilization and aspartate formation markedly decreased, but complete oxidation of glutamine carbons to CO2 increased to 37 and 23%, respectively, in resting and proliferating cells. The dipeptide, glycyl-L-glutamine, which is more stable than free glutamine, can substitute for glutamine in thymocyte cultures at higher concentrations.  相似文献   

3.
Cerebral rates of anaplerosis are known to be significant, yet the rates measured in vivo have been debated. In order to track glutamate metabolism in brain glutamatergic neurons and brain glia, for the first time unrestrained awake rats were continuously infused with a combination of H14CO3- and [1 - 13C]glucose in over 50 infusions ranging from 5 to 60 min. In whole-brain extracts from these animals, the appearance of 14C in brain glutamate and glutamine and appearance of 13C in the C-4 position of glutamate and glutamine were measured as a function of time. The rate of total neuronal glutamate turnover, the anaplerotic rate of synthesis of glutamine and glutamate from H14CO3-, flux through the glutamate/glutamine cycle, and a minimum estimate of whole-brain anaplerosis was obtained. The rate of synthesis of 14C-glutamate from H14CO3- was 1.29 +/- 0.11 nmoles/min/mg protein, whereas the rate of synthesis of 14C-glutamine was 1.48 +/- 0.10 nmoles/min/mg protein compared to total glutamate turnover of 9.39 +/- 0.73 nmoles/min/mg protein. From the turnover rate of glutamine, an upper limit for flux through the glutamate/glutamine cycle was estimated at 4.6 nmoles/min/mg protein. Synthesis of glutamine from H14CO3- was substantial, amounting to 32% of the glutamate/glutamine cycle. These rates were not significantly affected by a single injection of 100 mg/kg of the antiepileptic drug gabapentin. In contrast, acute administration of gabapentin significantly lowered incorporation of H14CO3- into glutamate and glutamine in excised rat retinas, suggesting metabolic effects of gabapentin may require chronic treatment and/or are restricted to brain areas enriched in target enzymes such as the cytosolic branched chain aminotransferase. We conclude that the brain has a high anaplerotic activity and that the combination of two tracers with different precursors affords unique insights into the compartmentation of cerebral metabolism.  相似文献   

4.
The metabolism of [1,2-13C2]acetate in rat brain was studied by in vivo and in vitro 13C NMR spectroscopy, in particular by taking advantage of the homonuclear 13C-13C spin coupling patterns. Well nourished rats were infused with [1,2-13C2]acetate or [1-13C]acetate in the jugular vein, and the in situ kinetics of 13C labeling during the infusion period was followed by 13C NMR techniques. The in vivo 13C NMR spectra showed signals from (i) the C-1 carbon of [1,2-13C2] acetate or [1-13C]acetate, (ii) 13CO3H-, and (iii) the natural abundance 13C carbons of sufficiently mobile fatty acids. Methanol/HCl/perchloric acid extracts of the brains were prepared and were further analyzed by high resolution 13C NMR. The homonuclear 13C-13C spin coupling patterns after infusion of [1,2-13C2]acetate showed very different isotopomer populations in glutamate, glutamine, and gamma-aminobutyric acid. Analyzing the relative proportions of these isotopomers revealed (i) two different glutamate compartments in the rat brain characterized by the presence and absence, respectively, of glutamine synthase activity, (ii) two different tricarboxylic acid cycles, one preferentially metabolizing [(1,2-13C2]acetate, the other mainly using unlabeled acetyl-coenzyme A, (iii) a hitherto unknown cerebral pyruvate recycling system associated with the tricarboxylic acid cycle, metabolizing primarily unlabeled acetyl-coenzyme A, and (iv) a predominant production of gamma-aminobutyric acid in the glutamate compartment lacking glutamine synthase.  相似文献   

5.
1. The pathways and the fate of glutamate carbon and nitrogen were investigated in isolated guinea-pig kidney-cortex tubules. 2. At low glutamate concentration (1 mM), the glutamate carbon skeleton was either completely oxidized or converted into glutamine. At high glutamate concentration (5 mM), glucose, lactate and alanine were additional products of glutamate metabolism. 3. At neither concentration of glutamate was there accumulation of ammonia. 4. Nitrogen-balance calculations and the release of 14CO2 from L-[1-14C]glutamate (which gives an estimation of the flux of glutamate carbon skeleton through alpha-oxoglutarate dehydrogenase) clearly indicated that, despite the absence of ammonia accumulation, glutamate metabolism was initiated by the action of glutamate dehydrogenase and not by transamination reactions as suggested by Klahr, Schoolwerth & Bourgoignie [(1972) Am. J. Physiol. 222, 813-820] and Preuss [(1972) Am. J. Physiol. 222, 1395-1397]. Additional evidence for this was obtained by the use of (i) amino-oxyacetate, an inhibitor of transaminases, which did not decrease glutamate removal, or (ii) L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which caused an accumulation of ammonia from glutamate. 5. Addition of NH4Cl plus glutamate caused an increase in both glutamate removal and glutamine synthesis, demonstrating that the supply of ammonia via glutamate dehydrogenase is the rate-limiting step in glutamine formation from glutamate. NH4Cl also inhibited the flux of glutamate through glutamate dehydrogenase and the formation of glucose, alanine and lactate. 6. The activities of enzymes possibly involved in the glutamate conversion into pyruvate were measured in guinea-pig renal cortex. 7. Renal arteriovenous-difference measurements revealed that in vivo the guinea-pig kidney adds glutamine and alanine to the circulating blood.  相似文献   

6.
A method involving labeling to isotopic steady state and modeling of the tricarboxylic acid cycle has been used to identify the respiratory substrates in lettuce embryos during the early steps of germination. We have compared the specific radioactivities of aspartate and glutamate and of glutamate C-1 and C-5 after labeling with different substrates. Labeling with [U-14C]acetate and 14CO2 was used to verify the validity of the model for this study; the relative labeling of aspartate and glutamate was that expected from the normal operation of the tricarboxylic acid cycle. After labeling with 14CO2, the label distribution in the glutamate molecule (95% of the label at glutamate C-1) was consistent with an input of carbon via the phosphoenolpyruvate carboxylase reaction, and the relative specific radioactivities of aspartate and glutamate permitted the quantification of the apparent rate of the fumarase reaction. CO2 and intermediates related to the tricarboxylic acid cycle were labeled with [U-14C]acetate, [1-14C] hexanoate, or [U-14C]palmitic acid. The ratios of specific radioactivities of asparate to glutamate and of glutamate C-1 to C-5 indicated that the fatty acids were degraded to acetyl units, suggesting the operation of beta-oxidation, and that the acety-CoA was incorporated directly into citrate. Short-term labeling with [1-14C]hexanoate showed that citrate and glutamate were labeled earlier than malate and aspartate, showing that this fatty acid was metabolized through the tricarboxylic acid cycle rather than the glyoxylate cycle. This was in agreement with the flux into gluconeogenesis compared to efflux as respiratory CO2. The fraction of labeled substrate incorporated into carbohydrates was only about 5% of that converted to CO2; the carbon flux into gluconeogenesis was determined after labeling with 14CO2 and [1-14C]hexanoate from the specific radioactivity of aspartate C-1 and the amount of label incorporated into the carbohydrate fraction. It was only 7.4% of the efflux of respiratory CO2. The labeling of alanine indicates a low activity of either a malic enzyme or the sequence phosphoenolpyruvate carboxykinase/pyruvate kinase. After labeling with [U-14C]glucose, the ratios of specific radioactivities indicated that the labeled carbohydrates contributed less than 10% to the flux of acetyl-CoA. The model indicated that the glycolytic flux is partitioned one-third to pyruvate and two-thirds to oxalacetate and is therefore mainly anaplerotic. The possible role of fatty acids as the main source of acetyl-CoA for respiration is discussed.  相似文献   

7.
We studied the effects of sodium valproate, a widely used antiepileptic drug and a hyperammonemic agent, on L-[1-14C]glutamine and L-[1-14C]glutamate metabolism in isolated human kidney-cortex tubules. Valproate markedly stimulated glutamine removal as well as the formation of ammonia, 14CO2, pyruvate, lactate and alanine, but it inhibited glucose synthesis; the increase in ammonia formation was explained by a stimulation by valproate mainly of flux through glutaminase (EC 3.5.1.2) and to a much lesser extent of flux through glutamate dehydrogenase (EC 1.4.1.3). By contrast, valproate did not stimulate glutamate removal or ammonia formation, suggesting that the increase in flux through glutamate dehydrogenase observed with glutamine as substrate was secondary to the increase in flux through glutaminase. Accumulation of pyruvate, alanine and lactate in the presence of valproate was less from glutamate than from glutamine. Inhibition by aminooxyacetate of accumulation of alanine from glutamine caused by valproate did not prevent the acceleration of glutamine utilization and the subsequent stimulation of ammonia formation. It is concluded from these data, which are the first concerning the in vitro metabolism of glutamine and glutamate in human kidney-cortex tubules, that the stimulatory effect of valproate is primarily exerted at the level of glutaminase in human renal cortex.  相似文献   

8.
This study was performed to analyze the metabolic fate of a high concentration (5 mM) of glutamine and glutamate in rat brain slices and the participation of these amino acids in the glutamine-glutamate cycle. For this, brain slices were incubated for 60 min with [3-13C]glutamine or [3-13C]glutamate. Tissue plus medium extracts were analyzed by enzymatic and 13C NMR measurements and fluxes through pathways of glutamine and glutamate metabolism were calculated. We demonstrate that both substrates were utilized and oxidized at high rates by rat brain slices and served as precursors of neurotransmitters, tricarboxylic acid (TCA) cycle intermediates and alanine. In order to determine the participation of glutamine synthetase in the appearance of new glutamine molecules with glutamine as substrate, brain slices were incubated with [3-13C]glutamine in the presence of methionine sulfoximine, a specific inhibitor of glutamine synthetase. Our results indicate that 36.5% of the new glutamine appeared was glutamine synthetase-dependent and 63.5% was formed from endogenous substrates. Flux through glutamic acid decarboxylase was higher with glutamine than with glutamate as substrate whereas fluxes from α-ketoglutarate to glutamate and through glutamine synthetase, malic enzyme, pyruvate dehydrogenase, pyruvate carboxylase and citrate synthase were in the same range with both substrates.  相似文献   

9.
1. The metabolism of L-alanine was studied in isolated guinea-pig kidney-cortex tubules. 2. In contrast with previous conclusions of Krebs [(1935) Biochem. J. 29, 1951-1969], glutamine was found to be the main carbon and nitrogenous product of the metabolism of alanine (at 1 and 5 mM). Glutamate and ammonia were only minor products. 3. At neither concentration of alanine was there accumulation of glucose, glycogen, pyruvate, lactate, aspartate or tricarboxylic acid-cycle intermediates. 4. Carbon-balance calculations and the release of 14CO2 from [U-14C]alanine indicate that oxidation of the alanine carbon skeleton occurred at both substrate concentrations. 5. A pathway involving alanine aminotransferase, glutamate dehydrogenase, glutamine synthetase, pyruvate dehydrogenase, pyruvate carboxylase and enzymes of the tricarboxylic acid cycle is proposed for the conversion of alanine into glutamine. 6. Strong evidence for this pathway was obtained by: (i) suppressing alanine removal by amino-oxyacetate, and inhibitor of transaminases, (ii) measuring the release of 14CO2 from [1-14C]alanine, (iii) the use of L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which induced a large increase in ammonia release from alanine, and (iv) the use of fluoroacetate, an inhibitor of aconitase, which inhibited glutamine synthesis with concomitant accumulation of citrate from alanine. 7. In this pathway, the central role of pyruvate carboxylase, which explains the discrepancy between our results and those of Krebs (1935), was also demonstrated.  相似文献   

10.
The metabolism of [U-(13)C]lactate (1 mM) in the presence of unlabeled glucose (2.5 mM) was investigated in glutamatergic cerebellar granule cells, cerebellar astrocytes, and corresponding co-cultures. It was evident that lactate is primarily a neuronal substrate and that lactate produced glycolytically from glucose in astrocytes serves as a substrate in neurons. Alanine was highly enriched with (13)C in the neurons, whereas this was not the case in the astrocytes. Moreover, the cellular content and the amount of alanine released into the medium were higher in neurons than astrocytes. On incubation of the different cell types in medium containing alanine (1 mM), the astrocytes exhibited the highest level of accumulation. Altogether, these results indicate a preferential synthesis and release of alanine in glutamatergic neurons and uptake in cerebellar astrocytes. A new functional role of alanine may be suggested as a carrier of nitrogen from glutamatergic neurons to astrocytes, a transport that may operate to provide ammonia for glutamine synthesis in astrocytes and dispose of ammonia generated by the glutaminase reaction in glutamatergic neurons. Hence, a model of a glutamate-glutamine/lactate-alanine shuttle is presented. To elucidate if this hypothesis is compatible with the pattern of alanine metabolism observed in the astrocytes and neurons from cerebellum, the cells were incubated in a medium containing [(15)N]alanine (1 mM) and [5-(15)N]glutamine (0.5 mM), respectively. Additionally, neurons were incubated with [U-(13)C]glutamine to estimate the magnitude of glutamine conversion to glutamate. Alanine was labeled from [5-(15)N]glutamine to 3.3% and [U-(13)C]glutamate generated from [U-(13)C]glutamine was labeled to 16%. In spite of the modest labeling in alanine, it is clear that nitrogen from ammonia is transferred to alanine via transamination with glutamate formed by reductive amination of alpha-ketoglutarate. With regard to the astrocytic part of the shuttle, glutamine was labeled to 22% in one nitrogen atom whereas 3.2% was labeled in two when astrocytes were incubated in [(15)N]alanine. Moreover, in co-cultures, [U-(13)C]alanine labeled glutamate and glutamine equally, whereas [U-(13)C]lactate preferentially labeled glutamate. Altogether, these results support the role proposed above of alanine as a possible ammonia nitrogen carrier between glutamatergic neurons and surrounding astrocytes and they show that lactate is preferentially metabolized in neurons and alanine in astrocytes.  相似文献   

11.
1. Glutamine and glucose metabolism was studied in bovine blood lymphocytes incubated at 37 degrees C in the presence of Krebs-Ringer bicarbonate buffer (pH 7.4) containing 1 mM [U-14C]glutamine and 5 mM [U-14C]glucose, respectively. 2. The major metabolic products from glutamine were ammonia, glutamate, and to a lesser extent, aspartate and CO2. Glucose was metabolized mainly to lactate and, to a lesser extent, pyruvate and CO2. These findings indicate incomplete oxidation of glutamine and glucose carbons in bovine blood lymphocytes. 3. Glucose provided three-fold greater amounts of energy to bovine blood lymphocytes than did glutamine on the basis of their measured end-products. Glycolysis accounted for 50% of glucose-derived ATP production. 4. Our findings suggest similar metabolic patterns of glutamine and glucose in lymphocytes between ruminants and non-ruminant species (e.g. rats). However, in contrast to rat peripheral lymphocytes, glucose, rather than glutamine, was a major energy substrate for bovine blood lymphocytes.  相似文献   

12.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
As part of a study on the regulation of renal ammoniagenesis in the mouse kidney, we investigated the effect of chronic metabolic acidosis on glutamine synthesis by isolated mouse renal proximal tubules. The results obtained reveal that, in tubules from control mice, glutamine synthesis occurred at high rates from glutamate and proline and, to a lesser extent, from ornithine, alanine, and aspartate. A 48 h, metabolic acidosis caused a marked inhibition of glutamine synthesis from near-physiological concentrations of both alanine and proline that were avidly metabolized by the tubules; metabolic acidosis also greatly stimulated glutamine utilization and metabolism. These effects were accompanied by a large increase (i) in alanine, proline, and glutamine gluconeogenesis and (ii) in ammonia accumulation from proline and glutamine. In the renal cortex of acidotic mice, the activity of phosphoenolpyruvate carboxykinase increased 4-fold, but that of glutamate dehydrogenase did not change; in contrast with what is known in the rat renal cortex, metabolic acidosis markedly diminished the glutamine synthetase activity and protein level, but not the glutamine synthetase mRNA level in the mouse renal cortex. These results strongly suggest that, in the mouse kidney, glutamine synthetase is an important regulatory component of the availability of the ammonium ions to be excreted for defending systemic acid-base balance. Furthermore, they show that, in rodents, the regulation of renal glutamine synthetase is species-specific.  相似文献   

14.
The time courses of incorporation of 13C from 13C-labelled glucose or acetate into cerebral amino acids (glutamate, glutamine and 4-aminobutyrate) and lactate were monitored by using 13C-n.m.r. spectroscopy. When [1-13C]glucose was used as precursor the C-2 of 4-aminobutyrate was more highly labelled than the analogous C-4 of glutamate, whereas no label was observed in glutamine. A similar pattern was observed with [2-13C]glucose: the C-1 of 4-aminobutyrate was more highly labelled than the analogous C-5 of glutamate. Again, no labelling of glutamine was detected. In contrast, [2-13C]acetate labelled the C-4 of glutamine and the C-2 of 4-aminobutyrate more highly than the C-4 of glutamate; [1-13C]acetate also labelled the C-1 and C-5 positions of glutamine more than the analogous positions of glutamate. These results are consistent with earlier patterns reported from the use of 14C-labelled precursors that led to the concept of compartmentation of neuronal and glial metabolism and now provide the possibility of distinguishing differential effects of metabolic perturbations on the two pools simultaneously. An unexpected observation was that citrate is more highly labelled from acetate than from glucose.  相似文献   

15.
Mathematical models of the TCA cycle derived previously for 14C tracer studies have been extended to 13C NMR to measure the 13C fractional enrichment of [2-13C]acetyl-CoA entering the cycle and the relative activities of the oxidative versus anaplerotic pathways. The analysis is based upon the steady-state enrichment of 13C into the glutamate carbons. Hearts perfused with [2-13C]acetate show low but significant activity of the anaplerotic pathways. Activation of two different anaplerotic pathways is demonstrated by addition of unlabeled propionate or pyruvate to hearts perfused with [2-13C]acetate. In each case, the amount of [2-13C]acetate being oxidized and the relative carbon flux through anaplerotic versus oxidative pathways are evaluated.  相似文献   

16.
The role of glutamine and alanine transport in the recycling of neurotransmitter glutamate was investigated in Guinea pig brain cortical tissue slices and prisms, and in cultured neuroblastoma and astrocyte cell lines. The ability of exogenous (2 mm) glutamine to displace 13C label supplied as [3-13C]pyruvate, [2-13C]acetate, l-[3-13C]lactate, or d-[1-13C]glucose was investigated using NMR spectroscopy. Glutamine transport was inhibited in slices under quiescent or depolarising conditions using histidine, which shares most transport routes with glutamine, or 2-(methylamino)isobutyric acid (MeAIB), a specific inhibitor of the neuronal system A. Glutamine mainly entered a large, slow turnover pool, probably located in neurons, which did not interact with the glutamate/glutamine neurotransmitter cycle. This uptake was inhibited by MeAIB. When [1-13C]glucose was used as substrate, glutamate/glutamine cycle turnover was inhibited by histidine but not MeAIB, suggesting that neuronal system A may not play a prominent role in neurotransmitter cycling. When transport was blocked by histidine under depolarising conditions, neurotransmitter pools were depleted, showing that glutamine transport is essential for maintenance of glutamate, GABA and alanine pools. Alanine labelling and release were decreased by histidine, showing that alanine was released from neurons and returned to astrocytes. The resultant implications for metabolic compartmentation and regulation of metabolism by transport processes are discussed.  相似文献   

17.
Our objective was to study brain amino acid metabolism in response to ketosis. The underlying hypothesis is that ketosis is associated with a fundamental change of brain amino acid handling and that this alteration is a factor in the anti-epileptic effect of the ketogenic diet. Specifically, we hypothesize that brain converts ketone bodies to acetyl-CoA and that this results in increased flux through the citrate synthetase reaction. As a result, oxaloacetate is consumed and is less available to the aspartate aminotransferase reaction; therefore, less glutamate is converted to aspartate and relatively more glutamate becomes available to the glutamine synthetase and glutamate decarboxylase reactions. We found in a mouse model of ketosis that the concentration of forebrain aspartate was diminished but the concentration of acetyl-CoA was increased. Studies of the incorporation of 13C into glutamate and glutamine with either [1-(13)C]glucose or [2-(13)C]acetate as precursor showed that ketotic brain metabolized relatively less glucose and relatively more acetate. When the ketotic mice were administered both acetate and a nitrogen donor, such as alanine or leucine, they manifested an increased forebrain concentration of glutamine and GABA. These findings supported the hypothesis that in ketosis there is greater production of acetyl-CoA and a consequent alteration in the equilibrium of the aspartate aminotransferase reaction that results in diminished aspartate production and potentially enhanced synthesis of glutamine and GABA.  相似文献   

18.
Adenosine is a neuromodulator, and it has been suggested that cerebral acetate metabolism induces adenosine formation. In the present study the effects that acetate has on cerebral intermediary metabolism, compared with those of glucose, were studied using the adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) and antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX). Fasted rats received an intravenous injection of CCPA, DPCPX, or vehicle. Fifteen minutes later either [1,2-13C]acetate or [1-13C]glucose was given intraperitoneally; after another 30 min the rats were decapitated. Cortical extracts were analyzed with 13C NMR spectroscopy and HPLC analysis. DPCPX affected neuronal and astrocytic metabolism. De novo synthesis of GABA from neuronal and astrocytic precursors was significantly reduced. De novo syntheses of glutamate and aspartate were at control levels, but their degradation was significantly elevated. In glutamine the anaplerotic activity and the amount of label in the position representing the second turn in the tricarboxylic acid cycle were significantly increased, suggesting elevated metabolic activity in astrocytes. CCPA did not influence GABA, aspartate, or glutamine synthesis. In glutamate the contribution from the astrocytic anaplerotic pathway was significantly decreased. In the present study the findings in the [1,2-13C]acetate and [1-13C]glucose control, CCPA, and DPCPX groups were complementary, and no adenosine A1 agonist effects arising from cerebral acetate metabolism were detected.  相似文献   

19.
Utilization of glucose by adult brain as its metabolic substrate does not mean that glutamate cannot be synthesized from glucose and subsequently oxidatively degraded. Between 10 and 20% of total pyruvate metabolism in brain occurs as formation of oxaloacetate (OAA), a tricarboxylic acid (TCA) cycle intermediate, from pyruvate plus CO(2). This anaplerotic ('pool-filling') process occurs in astrocytes, which in contrast to neurons express pyruvate carboxylase (PC) activity. Equivalent amounts of pyruvate are converted to acetylcoenzyme A and condensed with oxaloacetate to form citrate (Cit), which is metabolized to alpha-ketoglutarate (generating oxidatively-derived energy), glutamate and glutamine and transferred to neurons in the glutamate-glutamine cycle and used as precursor for transmitter glutamate. Since the blood-brain barrier is poorly permeable to glutamate and its metabolites, net synthesis of glutamate must be followed by degradation of equivalent amounts of glutamate, a cataplerotic ('pool-emptying') process, in which glutamate is converted in the TCA cycle to malate or oxaloacetate (generating additional energy), which exit the cycle to form one molecule pyruvate. To obtain an estimate of the rate of astrocytic oxidation of glutamate the rate of oxygen consumption was measured in primary cultures of mouse astrocytes metabolizing glutamate in the absence of other metabolic substrates. The observed rate is compatible with complete oxidative degradation of glutamate.  相似文献   

20.
Glutamate metabolism was studied in co-cultures of mouse cerebellar neurons (predominantly glutamatergic) and astrocytes. One set of cultures was superfused (90 min) in the presence of either [U-13C]glucose (2.5 mM) and lactate (1 mM) or [U-13C]lactate (1 mM) and glucose (2.5 mM). Other sets of cultures were incubated in medium containing [U-13C]lactate (1 mM) and glucose (2.5 mM) for 4 h. Regardless of the experimental conditions cell extracts were analyzed using mass spectrometry and nuclear magnetic resonance spectroscopy. 13C labeling of glutamate was much higher than that of glutamine under all experimental conditions indicating that acetyl-CoA from both lactate and glucose was preferentially metabolized in the neurons. Aspartate labeling was similar to that of glutamate, especially when [U-13C]glucose was the substrate. Labeling of glutamate, aspartate and glutamine was lower in the cells incubated with [U-13C]lactate. The first part of the pyruvate recycling pathway, pyruvate formation, was detected in singlet and doublet labeling of alanine under all experimental conditions. However, full recycling, detectable in singlet labeling of glutamate in the C-4 position was only quantifiable in the superfused cells both from [U-13C]glucose and [U-13C]lactate. Lactate and alanine were mostly uniformly labeled and labeling of alanine was the same regardless of the labeled substrate present and higher than that of lactate when superfused in the presence of [U-13C]glucose. These results show that metabolism of pyruvate, the precursor for lactate, alanine and acetyl-CoA is highly compartmentalized. Special issue dedicated to John P. Blass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号