首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aspen wood blocks were selectively delignified in the laboratory by Ischnoderma resinosum, Poria medulla-panis, and Xylobolus frustulatus. After 8 weeks only the outer surfaces of wood blocks were selectively delignified. The percentages of weight loss obtained after 4, 8, and 12 weeks showed that decay occurred at a relatively constant rate. Selectively delignified wood could be identified by using scanning electron microscopy only when lignin had been extensively removed from cell walls. X. frustulatus was able to form pockets of delignified wood throughout blocks after 12 weeks.  相似文献   

2.
《Fungal biology》2020,124(11):958-968
Silicified fossil legume woods of Cynometroxylon Chowdhury & Ghosh collected from the Neogene (late Miocene) sediments of the Bengal Basin, eastern India, exhibit fungal decay seldom found in the fossil record. The wood possesses numerous perforate areas on the surface that seem to be the result of extensive fungal activity. In transverse section, the decayed areas (pockets) appear irregular to ellipsoidal in outline; in longitudinal section these areas of disrupted tissue are somewhat spindle-shaped. Individual pockets are randomly scattered throughout the secondary xylem or are restricted to a narrow zone. The aforesaid patterns of decay in fossil wood show similarities with that of white rot decay commonly produced by higher fungi, specifically basidiomycetes and ascomycetes. The host fossil wood harbors abundant ramifying and septate fungal hyphae with knob like swellings similar to pseudoclamps in basidiomycetes, and three-celled conidia-like reproductive structures. This record expands our current knowledge of wood decaying fungi-host plant interaction in the Neogene tropical forests of Peninsular India.  相似文献   

3.
Wood-decaying basidiomycetes are some of the most effective bioconverters of lignocellulose in nature, however the way they alter wood crystalline cellulose on a molecular level is still not well understood. To address this, we examined and compared changes in wood undergoing decay by two species of brown rot fungi, Gloeophyllum trabeum and Meruliporia incrassata, and two species of white rot fungi, Irpex lacteus and Pycnoporus sanguineus, using X-ray diffraction (XRD) and 13C solid-state nuclear magnetic resonance (NMR) spectroscopy. The overall percent crystallinity in wood undergoing decay by M. incrassata, G. trabeum, and I. lacteus appeared to decrease according to the stage of decay, while in wood decayed by P. sanguineus the crystallinity was found to increase during some stages of degradation. This result is suggested to be potentially due to the different decay strategies employed by these fungi. The average spacing between the 200 cellulose crystal planes was significantly decreased in wood degraded by brown rot, whereas changes observed in wood degraded by the two white rot fungi examined varied according to the selectivity for lignin. The conclusions were supported by a quantitative analysis of the structural components in the wood before and during decay confirming the distinct differences observed for brown and white rot fungi. The results from this study were consistent with differences in degradation methods previously reported among fungal species, specifically more non-enzymatic degradation in brown rot versus more enzymatic degradation in white rot.  相似文献   

4.
A screening procedure in which scanning electron microscopy was used indicated that 26 white rot fungi selectively removed lignin from various coniferous and hardwood tree species. Delignified wood from field collections had distinct micromorphological characteristics that were easily differentiated from other types of decay. The middle lamella was degraded, and the cells were separated from one another. Secondary cell wall layers that remained had a fibrillar appearance. Chemical analyses of delignified wood indicated that the cells were composed primarily of cellulose. Only small percentages of lignin and hemicellulose were evident. Delignified wood was not uniformly distributed throughout the decayed wood samples. White-pocket and white-mottled areas of the various decayed wood examined contained delignified cells, but adjacent wood had a nonselective removal of lignin where all cell wall components had been degraded simultaneously. This investigation demonstrates that selective delignification among white rot fungi is more prevalent than previously realized and identifies a large number of fungi for use in studies of preferential lignin degradation.  相似文献   

5.
Importance of boron compounds in wood preservation is increasing due to their low environmental impact, high efficacy and the fact that many other active ingredients have been removed from the market after the introduction of the Biocidal Products Directive. The most important drawback of boron is prominent leaching in wet environment. In order to improve their fixation, and performance against wood decay fungi, boric acid was combined with montan wax emulsion. Possible synergistic effects of boric acid and montan wax were determined according to modified EN 113 procedure. Norway spruce and beech wood specimens were exposed to three white rot (Trametes versicolor, Pleurotus ostreatus and Hypoxylon fragiforme) and brown rot wood decay fungi (Gloeophyllum trabeum, Antrodia vaillantii and Serpula lacrymans) for 12 weeks. Boron leaching from vacuum/pressure treated Norway spruce wood was determined according to the continuous (EN 84 and ENV 1250-2) and non-continuous (OECD and prCEN/TS 15119-1) procedures. Boron was determined with ICP mass spectrometry in collected leachates. The results of the fungicidal tests clearly showed that montan wax emulsion and boric acid act synergistically against tested wood decay fungi. Approximately 50% lower boric acid retentions are required in combination with montan wax emulsions to achieve sufficient protection against wood rotting fungi. However, it is even more important that all leaching tests performed proved that the addition of montan wax decreased boron leaching from impregnated specimens for 20% up to 50%.  相似文献   

6.
The degradation of wood by brown rot fungi has been studied intensely for many years in order to facilitate the preservation of in-service wood. In this work we used X-ray diffraction to examine changes in wood cellulose crystallinity caused by the brown rot fungi Gloeophyllum trabeum, Coniophora puteana, and two isolates of Serpula lacrymans. All fungi increased apparent percent crystallinity early in the decay process while decreasing total amounts of both crystalline and amorphous material. Data also showed an apparent decrease of approximately 0.05 Å in the average spacing of the crystal planes in all degraded samples after roughly 20% weight loss, as well as a decrease in the average observed relative peak width at 2θ = 22.2°. These results may indicate a disruption of the outer most semi-crystalline cellulose chains comprising the wood microfibril. X-ray diffraction analysis of wood subjected to biological attack by fungi may provide insight into degradative processes and wood cellulose structure.  相似文献   

7.
Wood from aspen and birch that had been decayed for 12 weeks by Phlebia tremellosus had averages of 30 and 31% weight loss, respectively, and 70% lignin loss. Digestibility increased from averages of 21 and 13% for sound aspen and birch to 54 and 51% for decayed aspen and birch. Individual wood sugar analyses of decayed birch blocks indicated an average loss of 10% glucose, 45% xylose, and 19% mannose. Micromorphological studies demonstrated the removal of middle lamellae and separation of cells. Vessels also separated at perforation plates. Electron microscopy with OsO4-glutaraldehyde-fixed and KMnO4-fixed wood showed that lignin was progressively removed first from the secondary cell wall layers, beginning at the lumen surface, and later from the compound middle lamella. Extensive degradation of lignin was found throughout the secondary wall and middle lamella region between cells. In cells with advanced decay, the middle lamella between cells was completely degraded, but cell corner regions remained.  相似文献   

8.
Chemical and morphological changes of incipient to advanced stages of palo podrido, an extensively delignified wood, and other types of white rot decay found in the temperate forests of southern Chile were investigated. Palo podrido is a general term for white rot decay that is either selective or nonselective for the removal of lignin, whereas palo blanco describes the white decayed wood that has advanced stages of delignification. Selective delignification occurs mainly in trunks of Eucryphia cordifolia and Nothofagus dombeyi, which have the lowest lignin content and whose lignins have the largest amount of β-aryl ether bonds and the highest syringyl/guaiacyl ratio of all the native woods included in this study. A Ganoderma species was the main white rot fungus associated with the decay. The structural changes in lignin during the white rot degradation were examined by thioacidolysis, which revealed that the β-aryl ether-linked syringyl units were more specifically degraded than the guaiacyl ones, particularly in the case of selective delignification. Ultrastructural studies showed that the delignification process was diffuse throughout the cell wall. Lignin was first removed from the secondary wall nearest the lumen and then throughout the secondary wall toward the middle lamella. The middle lamella and cell corners were the last areas to be degraded. Black manganese deposits were found in some, but not all, selectively delignified samples. In advanced stages of delignification, almost pure cellulose could be found, although with a reduced degree of polymerization. Cellulolytic enzymes appeared to be responsible for depolymerization. A high brightness and an easy refining capacity were found in an unbleached pulp made from selectively delignified N. dombeyi wood. Its low viscosity, however, resulted in poor resistance properties of the pulp. The last stage of degradation (i.e., decomposition of cellulose-rich secondary wall layers) resulted in a gelatinlike substance. Ultrastructural and chemical analyses of this substance showed the matrix to have no microfibrillar structure characteristic of woody cell walls but to still be rich in glucan.  相似文献   

9.
《Mycoscience》2020,61(1):22-29
Myxomycetes inhabit coarse woody debris in varying stages of decay; however, their ecology in the dead wood of evergreen broadleaf trees is not well known. In this study, we examined the relationships between myxomycete species and the decay stage of wood from fallen trees in an evergreen broadleaf forest in Japan. Myxomycete species richness and abundance were calculated for eight stages of decay in fallen logs, according to the appearance and wood hardness of log portions. A total of 70 myxomycete species (including varieties) were found on the logs. Moderately decayed wood was the preferred habitat of myxomycetes (57 species; 81% of the total) and most species inhabited moist decayed wood. Analysis by nonmetric multidimensional scaling enabled the differentiation of myxomycete assemblages, with five groupings recognized across the progression of decay. Forty-two species preferred a particular decay stage, represented by the decay index. Physarum viride and Stemonitis splendens particularly preferred the less-decayed wood and Stemonitopsis typhina var. similis especially inhabited the well-decayed wood. Species from the order Physarales dominated the less-decayed wood, whereas Trichiales and Liceales species dominated the softer well-decayed wood. Myxomycetes diversity was high in and varied among logs with various stages of decay in a typical Japanese evergreen forest.  相似文献   

10.
Fast-growing plant wood Populus ussuriensis Kom, and Micheliamacclurel wood were respectively modified by formation of wood-polymer composite to improve their decay resistance. Two functional monomers, glycidyl methacrylate and ethylene glycol dimethacrylate, added with a few Azo-bis-isobutryonitrile as initiator, and maleic anhydride as catalyst, were first impregnated into wood cell lumen under a vacuum-pressure condition, and then in-situ polymerized into copolymers through a catalyst-thermal treatment. The decay resistances of untreated wood and wood-polymer composites were assessed by weight loss and compared by SEM observations. SEM and FTIR analysis indicated that the in-situ polymerized copolymers fully filled up wood cell lumen and also grafted onto wood cell walls, resulting in the blockage of passages for microorganisms and moisture to wood cell walls. Thus, the decay resistance of poplar wood-polymer composite and Micheliamacclurel wood-polymer composite against brown rot fungus and white rot fungus in terms of weight loss achieved 3.43–3.92% and 1.04–1.33%, improved 95.06–95.18% and 95.10–95.35% than those of untreated poplar wood and Micheliamacclurel wood, respectively; and also respectively higher than that of boron-treated wood. The SEM observations for the decayed poplar wood, Micheliamacclurel wood and their corresponding treated wood also showed the remarkable improvement of decay resistance of wood after such treatment, which effectively protected wood from degradation by fungi.  相似文献   

11.
Chemical and micromorphological analysis revealed that South Chilean “palo podrido” results from a white-rot fungus that causes highly selective and extensive delignification. Palo podrido samples from 10 different hardwood trunks (Eucryphia cordifolia, Drimys winteri, and Nothofagus dombeyi) decayed by Ganoderma applanatum were analyzed. Of 14 samples, 11 had extremely low Klason lignin values, ranging from 6.1 to 0.4% (dry weight). The most remarkable and unusual feature was that delignification and defibration were not restricted to small pockets but extended throughout large areas in the interior of trunks subjected to undisturbed rotting over long periods of time. Comparative analysis of water content, swelling capacity, and lignin content led to the conclusion that besides lignin degradation, suppression of the cellulolytic activity of the rotting organisms plays a decisive role. Among various nutrients added to a palo podrido sample (3% residual Klason lignin), the nitrogen source was the only one leading to almost complete cellulose degradation. We suggest that the extremely low nitrogen content (0.037 to 0.073% [dry weight]) of the investigated wood species was the primary cause for the extensive delignification as well as the concomitant suppression of cellulose breakdown. The low temperatures, high humidity, and microaerobic conditions maintained within the decaying trunks are discussed as additional ecological factors favoring delignification in South Chilean rain forests.  相似文献   

12.
Corsican pine (Pinus nigra) sapwood was chemically modified with acetic, or hexanoic anhydride to a variety of weight percentage gains. The cell wall microporosity of the wood before and after chemical modification was determined using the technique of solute exclusion. The results showed that the cell wall microporosity decreased as the level of substitution increased, but the cell wall remained accessible at high levels of substitution. Values of the fibre saturation point (FSP) calculated from solute exclusion data ranged from c. 40% (for unmodified wood) to c. 20% at approx. 25% weight percentage gain, but were dependent to some degree upon the calculation method. Evidence is presented suggesting that the reduction in FSP may be attributable to bulking of the cell wall by bonded acyl adduct. It is concluded that the level of hydroxyl substitution in the cell wall is not the primary mechanism for giving decay protection in anhydride-modified wood.  相似文献   

13.
Wood chips of Pinus radiata softwood were biotreated with the brown rot fungus (BRF) Gloeophyllum trabeum for periods from 4 and 12 weeks. Biodegradation by BRF leads to an increase in cellulose depolymerization with increasing incubation time. As a result, the intrinsic viscosity of holocellulose decreased from 1,487 cm3/g in control samples to 783 and 600 cm3/g in 4- and 12-week decayed wood chips, respectively. Wood weight and glucan losses varied from 6 to 14% and 9 to 21%, respectively. Undecayed and 4-week decayed wood chips were delignified by alkaline (NaOH solution) or organosolv (ethanol/water) processes to produced cellulosic pulps. For both process, pulp yield was 5–10% lower for decayed samples than for control pulps. However, organosolv bio-pulps presented low residual lignin amount and high glucan retention. Chemical pulps and milled wood from undecayed and 4-week decayed wood chips were pre-saccharified with cellulases for 24 h at 50°C followed by simultaneous saccharification and fermentation (SSF) with the yeast Saccharomyces cerevisiae IR2-9a at 40°C for 96 h for bioethanol production. Considering glucan losses during wood decay and conversion yields from chemical pulping and SSF processes, no gains in ethanol production were obtained from the combination of BRF with alkaline delignification; however, the combination of BRF and organosolv processes resulted in a calculated production of 210 mL ethanol/kg wood or 72% of the maximum theoretically possible from that pretreatment, which was the best result obtained in the present study.  相似文献   

14.
Decay resistance of Rubber wood (Hevea brasiliensis) esterified with three fatty acid chlorides (hexanoyl chloride (C6), decanoyl chloride (C10) and tetra-decanoyl chloride (C14)) was evaluated. Unmodified and modified wood samples were exposed to a brown rot (Polyporus meliae) and a white rot (Coriolus versicolor) fungus for 12 weeks. Unmodified rubber wood was severely decayed by P. meliae and C. versicolor, which was indicated by significant weight loss. The rate of decay by brown rot was higher than white rot. Modified wood samples exhibited very good resistant to brown and white-rot fungi. The degree of protection increased with increase in degree of modification. P. meliae, a brown rot fungus, removed structural carbohydrate component in unmodified wood selectively whereas, C. vesicolor showed preference to lignin. The FTIR spectra of modified wood exposed to fungi show no significant changes in relative peak intensities of lignin/carbohydrates indicating effectiveness of chemically modified wood in restricting chemical degradation. Chemical modification occurred more efficiently at carbohydrate portion of the wood. Therefore, it is more effective in retarding decay due to P. meliae.  相似文献   

15.
Lipids were analyzed by gas chromatography-mass spectrometry for a 7-week in vitro decay of eucalypt wood by four ligninolytic basidiomycetes. The sound wood contained up to 75 mg of lipophilic compounds per 100 g of wood. Hydrolysis of sterol esters, which represented 38% of total wood lipids, occurred during the fungal decay. The initial increase of linoleic and other free unsaturated fatty acids paralleled the decrease of sterol esters. Moreover, new lipid compounds were found at advanced stages of wood decay that were identified from their mass spectra as unsaturated dicarboxylic acids consisting of a long aliphatic chain attached to the C-3 position of itaconic acid. These dicarboxylic acids were especially abundant in the wood treated with Ceriporiopsis subvermispora (up to 24 mg per 100 g of wood) but also were produced by Phlebia radiata, Pleurotus pulmonarius, and Bjerkandera adusta. We hypothesize that three main alkylitaconic acids (tetradecylitaconic, cis-7-hexadecenylitaconic, and hexadecylitaconic acids) are synthesized by fungi in condensation reactions involving palmitic, oleic, and stearic acids. We suggest that both wood unsaturated fatty acids (present in free form or released from esters during natural decay) and unsaturated metabolites synthesized by fungi could serve as a source for peroxidizable lipids in lignin degradation by white rot basidiomycetes.  相似文献   

16.
The abilities of some ascomycetes (Myxotrichaceae) from a Sphagnum bog in Alberta to degrade cellulose, phenolics, and Sphagnum tissue were compared with those of two basidiomycetes. Most Myxotrichaceae degraded cellulose and tannic acid, and removed cell-wall components simultaneously from Sphagnum tissues, whereas the basidiomycetes degraded cellulose and insoluble phenolics, and preferentially removed the polyphenolic matrix from Sphagnum cell walls. Mass losses from Sphagnum varied from up to 50% for some ascomycetes to a maximum of 35% for the basidiomycetes. The decomposition of Sphagnum by the Myxotrichaceae was analogous to the white rot of wood and indicates that these fungi have the potential to cause significant mineralization of carbon in bogs.  相似文献   

17.
This study evaluated the decay resistance of ash (Fraxinus excelsior L.), beech (Fagus sylvatica L.), and maple (Acer platanoides L.) wood impregnated by a full cell process with N-methylol melamine (NMM) and combined NMM-metal complex dye (NMM-BS) in aqueous solutions. Basidiomycete decay testing involved incubation with Coniophora puteana (brown rot) and Trametes versicolor (white rot) according to a modified EN 113 (1996) standard, while for the soft rot fungal resistance was evaluated following the standard ENv 807 (2001). NMM and NMM-BS modifications at a WPG range of 7–11% provided decay protection against brown rot resulting in a mass loss less than the required limit (3%). The NMM and NMM-BS modified wood showed increased resistance to white rot decay; however, a higher WPG is needed to prohibit attack from this hardwood specific fungus. The metal-complex dye alone revealed biocidal effects against basidiomycetes. An increased WPG in NMM or NMM-BS had a positive impact against soft rot decay and the lowest mass losses after 32 weeks of exposure were obtained with NMM modification at about 18–21% WPG. NMM modification at this WPG range, however, was not sufficient to protect the wood from soft rot decay. The wood of beech and maple showed slightly higher resistance to all decay types than ash, probably due to the poorer degree of modification of the latter.  相似文献   

18.
We focused in selecting four fungi, naturally living in Eucalyptus sp. fields, for application in accelerating stump decay. The wood-rot fungi Pycnoporus sanguineus (Ps), Lentinus bertieri (Lb) and Xylaria sp. (Xa) were isolated from Eucalyptus sp. field and the fungus Lentinula edodes (Led) was obtained from a commercial strain. All fungi were studied according to their capacity to degrade eucalyptus urograndis wood. In order to evaluate mass losses of seven years old eucalyptus urograndis' wood test blocks from heartwood were prepared added to glass flasks with red clay soil. The humidity of the soil was adjusted with 50 and 100% of its water retention capacity. Mass loss evaluations occurred at 30 until 120 days after eucalyptus wood degradation. Chemical analysis and soil pH were measured only in the last evaluation. Mycelial growth assays with potato-dextrose-agar, malt-agar and sawdust-dextrose-agar at three temperatures was carried out in order to get information about the best conditions of fungi growth. On the 120th day, Ps and Lb showed good capacity of wood degradation by leading to a high mass loss in soil with highest humidity. These fungi were the best consumers of lignin, hemicellulose, cellulose and extractives, caused acidification in the soil. Ps and Lb had faster mycelial growth in sawdust-dextrose-agar, especially in high temperature, comparing to Xa and Led. Xa and Led are not good eucalyptus urograndis heartwood degraders, because they consume preferentially hemicellulose.  相似文献   

19.
Wood decomposition is an important component in forest ecosystems but information about the diversity of fungi causing decay is lacking. This is especially true for the temperate rain forests in Chile. These investigations show results of a biodiversity study of white-rot fungi in wood obtained from Chiloé National Park in Los Lagos region, Chile. Culturing from white-rotted wood followed by sequencing of the complete internal transcribed spacer region of the ribosomal DNA (rDNA) or partial large subunit region of the rDNA, identified 12 different species in the Basidiomycota. All of these fungi were characterized as white rot fungi and were identified with a BLAST match of 97 % or greater to sequences in the GenBank database. Fungi obtained were species of Phlebia, Mycoacia, Hyphodontia, Bjerkandera, Phanerochaete, Stereum, Trametes, and Ceriporiopsis. This report identifies for the first time in Chile the species Ceriporiopsis subvermispora, Hyphodontia radula, Phlebia radiata, Phanerochaete affinis, Peniophora cinerea, Stereum gausapatum, Phlebia setulosa and Phanerochaete sordida. Scanning electron microscopy was used to characterize the type of decay caused by the fungi that were isolated and a combination of selective lignin degraders and simultaneous white rot fungi were found. Fungi that cause a selective degradation of lignin are of interest for bioprocessing technologies that require modification or degradation of lignin without cellulose removal.  相似文献   

20.
Chemical changes of polysaccharides and lignin in Prunus armeniaca decayed by the ascomycete fungus Hypocrea sulphurea were investigated. Solid-state 13C NMR spectra showed that polysaccharides were the main components of fresh and decayed wood. Decomposition of cellulose and hemicellulose by the fungus was minimal although a slight preference for crystalline as compared with amorphous cellulose was recognised. Comparison of the signal intensity of the resonance at 145 ppm in fresh and decomposed wood suggested that the fungus had decomposed tannin constituents. Thermochemolysis with tetramethylammonium hydroxide (TMAH) and product identification by gas chromatography–mass spectrometry revealed that the ratio of syringyl-type (S) units to guaiacyl-type (G) units decreased from 1.8 to 1.1 following fungal attack. Increases in both guaiacyl and syringyl acid-aldehyde ratios (Ad/Al)G, (Ad/Al)S together with an increase from 0.82 to 3.54 in the ratio of methyl 3,4-dimethoxybenzoate to the sum of 1-(3,4-dimethoxyphenyl)-1,2,3-trimethoxypropane (threo and erythro-isomers) ΓG from the decayed wood confirmed oxidative Cα–Cβ cleavage for the mechanism of lignin decay by this ascomycete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号