首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
X-ray induced mutation to 6-thioguanine (6TG)-resistance was studied in early passage cultures of human diploid fibroblasts.The appearance of phenotypic induced mutants in irradiated cell populations was linearly related to the number of post-irradiation cell doublings and to the duration of the growth period prior to mutant selection; the maximum yield of X-ray induced mutants was observed when cells surviving radiation had completed 3–4 doublings (6–7 days growth_in non-selective medium.The maximum induced mutation frequency was linearly related to X-ray dose and the mutation rate was estimated to be 3.1 · 10?7 mutations per viable cell per rad.The data obtained for X-ray induced mutations in cultured human diploid fibroblasts were compared with (a) similar experimental data obtained with established cell cultures and (b) theoretical predictions of X-ray mutation rates in human germ cells.  相似文献   

2.
The lag in phenotype expression of methylnitrosourea(MNU)-induced mutation to 6-thioguanine (6TG) resistance has been studied in a diploid human lymphoblastoid cell line. We find that a considerable period (8–12 days) elapses before new mutants appear in treated cultures; after 2 weeks, however, a stable maximum fraction is attained, as would be expected for a genetic mutation. We present preliminary data linking this phenotypic lag to the slow degradation rate of hypoxanthine-guanine phosphoribosyl transferase (HGPRT) and to an apparent requirement for very low (<0.2% normal) cellular HGPRT content in order for cells to be resistant to 10 μg 6TG/ml. A series of reconstruction experiments are presented, the results of which support the conclusion that selective pressures in the assay procedure do not bias the quantitative estimates of induced mutant fraction.  相似文献   

3.
We have investigated the induction of mutants resistant to 6-thioguanine (6TG) following 254 nm ultraviolet light exposure of density-inhibited cultures of human diploid fibroblasts. Phenotypic expression of 6TG resistance was maximal within 9 days and remained stable through 19 days after irradiation. In reconstruction studies, complete recovery of 6TG-resistant mutants occurred at cell densities of up to 35 000 cells per 100-mm petri dish. The induced mutation frequency increased linearly with dose over the range of 3–9 J/m2; the D0 of the survival curve was 4.2 J/m2. Delaying subculture to low density for 1.5–24 h after irradiation produced unexpected alterations in induced mutation frequencies. An increase in UV-induced mutations of approximately 3-fold was observed in cultures maintained in confluence for 3 h. This trend was reversed with longer holding times: the mutation frequency declined sharply in cultures held for 6 h compared to the 3-h value, and thereafter showed a steady and gradual diminution to background levels.

These data suggest that the repair of potentíally mutagenic damage is a complex phenomenon which can lead to an increase or decrease in mutation frequency as a function of holding time. Although the decline in mutation frequency observed following longer holding intervals is consistent with the notion of an error-free process, we hypothesize that the increased mutation frequency produced by a short holding period reflects the existence of a cell-mediated process which enhances the mutagenic potential of at least some UV-induced DNA photoproducts.  相似文献   


4.
The mutation of diploid human lymphoblasts by methylnitronitrosoguanidine (MNNG) was measured over the range of 0--45 ng of MNNG/ml of of medium. We found a 12-day lag in the phenotypic expression of 6-thioguanine resistance; the occurrence of this lag was independent of MNNG concentration. We hypothesize that the unexpectedly long lag period reflects a requirement for the loss of previously existing molecules of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) after mutation at the HGPRT locus.  相似文献   

5.
R S Gupta  B Singh 《Mutation research》1983,113(5):441-454
Stable mutants exhibiting high degree of resistance (100-1000-fold) to various nucleoside analogs viz, toyocamycin, tubercidin, 6-methyl mercaptopurine riboside (6-MeMPR) and pyrazofurin, are obtained at similar frequency (congruent to 1 X 10(-4] in CHO cells. The mutants resistant to any of the above analogs exhibit similar degree of cross-resistance to the other three nucleoside analogs, and all of the mutants examined contained no measurable activity of the purine salvage pathway enzyme adenosine kinase (AK) which converts these analogs to their phosphorylated derivatives. These results indicate that very similar mutants are selected using any of these analogs. The recovery of AK- mutants in CHO cells is not affected by cell density (up to at least 5 X 10(5) cells per 100-mm diameter dish) and after treatment with mutagen(s) maximum mutagenic effect is observed after 7-8 days, which then remains unchanged for the next several days. Treatment of CHO cells with a number of mutagenic agents e.g. ethyl methanesulfonate, ICR170, ultraviolet light, and benzo[a]pyrene, led to a nearly linear concentration-dependent increase in the frequency of the AK- mutants in cultures. The mutagenic response of the AK locus to these agents compared favorably with that of the HGPRT locus (6-thioguanine resistance) within the same experiments. These results show that the selection system for AK- mutants provides an additional valuable genetic marker for quantitative mutagenesis studies in CHO cells.  相似文献   

6.
The induction of mutations by the alkylating agent ethyl methanesulfonate (EMS) was determined with Chinese hamster ovary cells maintained in serum-free medium to arrest DNA synthesis and cell division. The arrested cultures were treated with EMS and maintained in serum-free medium for various time intervals post-treatment before serum containing medium was added to initiate DNA synthesis and cell division. The concentration-dependent increase in 6-thioguanine-resistant mutants in the arrested cultures was similar to that found with exponentially dividing cultures when serum was added to the arrested cultures immediately after the EMS treatment; the time course of phenotypic expression was also similar with both cultures. In addition, maintenance of the arrested cultures in serum-free medium for up to 18 days post-treatment resulted in no change in the mutant frequency. This suggests that the mutagenic damage is not removed in these arrested cultures. Furthermore, maintenance of the arrested state for increasing time intervals before serum addition results in decreases in the time necessary for maximum phenotypic expression. Cultures maintained in serum-free medium for 16 days after mutation treatment show complete expression of the mutations with no need for subculture. This last result suggests that the mutagenic damage induced by EMS in Chinese hamster ovary cells is not removed and that this damage results in both the induction and expression of mutation in the absence of DNA replication.  相似文献   

7.
Large quantities of mitotic cells may be collected by mitotic detachment from a population of Chinese hamster ovary cells growing on positively charged dextran microcarriers in suspension culture. Exponentially growing cells are treated for 2.5 h with colcemid and mitotic cells are detached from the microcarriers by increasing the stirring speed. A yield of 4-6% of the total population is obtained and, of the cells collected, 85-95% are arrested in metaphase. Using this means to synchronize cells we have determined the cell cycle dependence of the toxic and mutagenic effects of 5-bromo-2'-deoxyuridine (BUdR) and ethyl methanesulfonate (EMS). Mutation was measured at two independent loci: resistance to 6-thioguanine and resistance to ouabain. Both mutagens were more toxic during S phase as compared to G1 or G2 or mitosis. BUdR induced significant mutation only during S phase. The maximum induction of 6-thioguanine resistance was observed in cultures treated 10 h after plating of mitotic cells (2 h into S phase), while the maximum induction of ouabain resistance was observed in cultures treated 10-12 h after plating of mitotic cells (2-4 h into S phase). EMS induced significant mutation at all points in the cell cycle. Mutation induction reached a minimum during S phase but the magnitude of difference between any two points in the cell cycle was found to be less than two-fold.  相似文献   

8.
K Sato  N Hieda 《Mutation research》1980,71(2):233-241
The mutant mouse lymphoma cell Q31, which is sensitive to 4-nitroquinoline 1-oxide and ultraviolet radiation (UV), was compared with the parental L5178Y cell for the effect of caffeine and mutation induction after UV irradiation. Caffeine potentiated the lethal effect of UV in both cell strains to a similar extent, indicating that the defective process in Q31 cells was caffeine-insensitive. UV-induced mutation to 6-thioguanine resistance was determined in L5178Y and Q31 cells. The maximal yield of mutants was obtained 7 days post-irradiation in L5178Y cells and 14 days in Q31 cells for higher UV doses. It appears that a much longer time is required for the mutant cells than for the parental cells for full expression of the resistance phenotype even at equitoxic UV doses. A substantially higher frequency in induced mutations was observed in Q31 cells than in L5178Y cells at a given dose of UV. A plot of induced mutation frequency as a function of logarithm of surviving fraction again indicates hypermutability of Q31 cells as compared with the parental strain. In contrast, X-rays induced a similar frequency of mutations to 6-thioguanine resistance in L5178Y and Q31 cells.  相似文献   

9.
Growth of granulation tissue was initiated with croton oil on the inside of a subcutaneous air pouch, on the back of adult male rats. Two days later, N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and benzo[a]pyrene (BP) were applied directly into the pouch in doses ranging from 0.05 to 1.8 mg and from 0.03 to 0.5 mg, resp. The granulation tissue was excised after 48 h. Isolated single cells were checked for their 6-thioguanine resistance in vitro. The influence of cell density during expression time in vitro, of 6-thioguanine concentration and cell density in selective media on the recovery of mutant cells was investigated. The spontaneous mutation frequency was 0.53 x 10(-5). There was a dose-dependent increase in mutation frequencies with both compounds. The frequency was 5 times as high with MNNG as with BP.  相似文献   

10.
The cellular uptake, the cytotoxicity and the induction of resistance to 6-thioguanine (6-TG) in Chinese hamster V79 cells exposed to insoluble crystalline trivalent chromium [Cr(III)], Cr2O3, were investigated. Intracytoplasmic Cr2O3 crystalline particle-containing vacuoles were observed by electron microscopy. Concentrations of 50-200 micrograms/ml did not have a marked killing effect but did show a predominantly concentration-dependent inhibitory effect on cell cycle progression with accumulation of cells in G2 phase. Exposure for 18 h to Cr2O3 induced a statistically significant (p less than 0.001) increase in the mutation frequency of up to 10-fold over the controls. Expression time was 6 days for the lowest concentration and 9 days for the highest. Culture of 6-TGr clones in selective media indicated that they were mutants at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus. Examination of growth patterns of Cr2O3-induced mutants showed that, after a delay in reinitiating cell growth, they had varying growth kinetics. The results indicate the ability of a particulate (Cr(III) compound to induce mutation in a mammalian cell system and the usefulness of such systems for detecting genotoxic insoluble metal compounds.  相似文献   

11.
Abstract Cell multiplication and growth of Saccharomyces cereviseae were followed in 2-ml test tubes containing Wickerham's synthetic medium or very dilute synthetic media supplemented in various ways. The ability of the cell cultures to leave the lag phase and enter the exponential phase of growth was investigated. Multiplication was assessed by microscopical observation. The results showed great differences in times required for the cultures to leave the lag phases and begin multiplication. In Wickerham's medium, all cultures grew well 6 h after inoculation. In the dilute medium, several days elapsed before all the cultures grew. These cultures went into exponential growth with approximately first order kinetics. In the unsupplemented medium, the 'half-lives' in the lag phase were about 28 h. Addition of either Ca2+ or Ca2+ plus A23187 (calcimycin) reduced the half-lives to 10 and 6 h, respectively. The doubling times in the exponential phases of growth were not shortened by these additions. We suggest that Ca2+ plays a crucial role as a signal to switch on the mode of cell proliferation in S. cerevisiae .  相似文献   

12.
We have investigated conditions necessary to quantify the relationship between exposure to a mutagen, ethyl methanesulfonate (EMS), and the frequency of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase locus in V79 cells. Maximal expression of potential mutants has been achieved by either subculturing at fewer than 5 X 10(5) cells/100-mm dish at 2-day intervals or by daily feeding of cultures. An expression period of 5 days (measure from 1 day after the initiation of treatment with the chemical mutagen) should be allowed, since at least 4 days of expression is required to reach to steady maximum of mutation frequency. It appears that there is no concentration dependence of expression time necessary to reach a plateau of mutation frequency with increasing concentrations of EMS up to 1.6 mg/ml. About 1.25 X 10(5) cells/100-mm dish or fewer should be plated for selection to avoid the loss of mutants which occurs at 1.5 X 10(5) cells/dish, presumably through cross-feeding (metabolic cooperation). The use of 6-thioguanine in hypoxanthine-free medium (supplemented with dialyzed fetal calf serum) appears to be a very stringent condition for selection. Mutation induction by EMS as a function of EMS exposure (EMS concentration X treatment time) increases linearly with concentration up to 12 h. For these treatment periods, the observed mutation frequencies for EMS are directly proportional to mutagen exposure regardless of the duration of the treatment.  相似文献   

13.
We compared the effects of three growth factors, acidic fibroblast growth factor (aFGF), epidermal growth factor (EGF), and thrombin, on rat astroblast proliferation, morphology, glutamine synthetase-specific activity, and phenotypic expression of proteins. In vitro experiments were made on 20-day-old primary cultures. Astroblast proliferation was stimulated transiently (after 48 h treatment) by the three growth factors, while the cell glutamine synthetase activity began to increase significantly only after 3 days of treatment. Acidic FGF and EGF, but not thrombin, modified the cell morphology. The effects on phenotypic expression were first determined after 5 days of treatment to minimize the mitogenic effect of the factors. Proteins synthesized during the last 18 h of the treatments were separated by two-dimensional polyacrylamide gel electrophoresis. About 600 spots were compared, 54 were modulated by the various treatments, 13 were altered similarly by all three factors, 28 by aFGF and EGF, 7 by only aFGF, 3 by only EGF, and 3 by only thrombin. These results indicate a large similarity of effects between aFGF and EGF (41 proteins) and show that these factors elicit a more extended modulation of the phenotypic expression than thrombin (13 proteins). Each of the three factors has a few specific effects, which suggests that even for aFGF and EGF, which are supposed to elicit their effects through membrane receptor-associated tyrosine kinase activity, some specificity appears in their mechanism of action. A model is proposed to suggest that cell maturation is characterized by the modulation of the synthesis of many proteins which can be grouped into classes. Each class appears to be under the control of one regulatory element. The specificity of the effect of a growth factor should result from the activation of a specific combination of such regulatory elements. Analysis of the proteins after only 18 h of treatment, when neither proliferation nor maturation were significantly affected, showed that 11 proteins were regulated only at that time. These proteins could be related to intermediate steps of the growth factor signal transduction.  相似文献   

14.
Chinese hamster V79 cells were mutagenized with ethyl methanesulfonate at various concentrations. Clones resistant to 8-azaguanine (20 and 80 micrograms/ml) or 6-thioguanine (4 micrograms/ml) were selected at different times after the treatments. The total yield of induced mutations was only slightly affected by the kind and concentration of purine analog used in the selection. However, full phenotypic expression of the mutants selected with 8-azaguanine was achieved earlier than that of mutants resistant to 6-thioguanine. This result seems to be best explained by the reported lower affinity of 8-azaguanine for the wild-type HGPRT enzyme, thus providing evidence that, in this gene-mutation assay, the phenotypic expression time has a physiological component.  相似文献   

15.
The influence of cell to cell contact during expression of radiation mutation at the HGPRT locus was examined using Chinese hamster V79 spheroids. Spheroids left intact for up to 6 days following 7.5 Gy (and then dissociated into single cells for selection in 6-thioguanine) showed no significant decrease in radiation-induced mutation frequency compared to cells of spheroids dissociated immediately following irradiation and passaged in monolayers during the expression interval. These results suggest that the intimate cell contact which occurs between cells in spheroids does not inhibit mutant expression. However, the cell selection process did appear to reduce mutation frequency when spheroids were left intact for 8 days of expression, or when spheroids received 10 Gy.  相似文献   

16.
Using synchronous populations obtained by selectively detaching mitotic cells from cultures grown in monolayer, we demonstrate here that Chinese hamster ovary (CHO) cells exhibit a differential sensitivity to mutation induction by UV as a function of position in the cell cycle. When mutation induction to 6-thioguanine (TG) resistance is monitored, several maxima and minima are displayed during cell-cycle traverse, with a major maximum occurring in early S phase. Although cells in S phase are more sensitive to UV-mediated cell lethality than those in G1 or G2/M phases, there is not a strict correlation with induced mutation frequency. Fluence-response curves obtained at several times during the cell cycle yield Dq values approximating 6 J/m2. The primary survival characteristic which varies with cell cycle position is D0, ranging from 2.5 J/m2 at 6 h after mitotic selection to 5.5 J/m2 at 11 h afterward. Based on studies with asynchronous, logarithmically growing populations, as well as those mitotically selected to be synchronous, the optimum phenotypic expression time for induced TG resistance is 7–9 days and is essentially independent of both UV fluence and position in the cell cycle. All isolated mutants have altered hypozanthine—guanine phosphoribosyl transferase (HGPRT) activity, and no difference in the residual level of activity was detected among isolated clones receiving UV radiation during G1, S, or late S/G2 phases of the cell cycle. Changes in cellular morphology during cell-cycle traverse do not contribute to the differential susceptibility to UV-induced mutagenesis.  相似文献   

17.
The lenth of the expression time for mutants resistant to 8-azaguanine or 6-thioguanine induced by X-rays was determined in human diploid skin fibrobalsts. The cells were seeded in the selective medium over a period of 14 days after treatment. Direct expression of at least a part of the mutants was observed at day 0, and an increase of the mutant frequency over the entire cultivation period appeared to be due to spontaneous mutation.The dose-response relationship does not appear to deviate from linearity. The mutation rate per R had a mean value of 2.1 × 10?7 which is about twice the value of the mutation rate found in rodent cells for the same locus.  相似文献   

18.
An assay is described for the measurement of mutation induction at the hypoxanthine-guanine phosphoribosyl transferase (HGPRT) locus in Chinese hamster ovary (CHO) cells utilizing resistance to 6-thioguanine (TG). Optimal selection conditions are defined for such parameters as phenotypic expression time prior to selection, and TG concentration and cell density which permits maximum mutant recovery. The nature of the TG-resistant mutants is characterized by several physiological and biochemical methods. The data demonstrate that more than 98% of the mutant clones isolated by this selection procedure contain altered HGPRTase activity. The CHO/HGPRT system thus shows the specificity necessary for a specific gene locus mutational assay.  相似文献   

19.
Satellite cell cultures were derived from mice selected long-term over 70 generations for body weight (DU-6, growth), carcass protein amount (DU-6P, protein) and an index combining body weight and endurance treadmill performance (DU-6+LB, growth + fitness) at 42 days of age and from an unselected control line (DU-Ks). They were grown under identical environmental conditions to examine intrinsic cellular differences in proliferation, protein metabolism and responsiveness to growth factors. Growth kinetics (DNA and protein amounts) were determined over a 12-day period. During exponential growth, all growth-selected cultures grew faster than the control culture: (DU-6+LB=DU-6P)>DU-6>DU-Ks. The differences in DNA and protein levels were maintained until day 8. DU-Ks cultures reached similar levels as the growth (DU-6) and protein (DU-6P) cultures in terms of DNA at day 12 of cultivation. Thus, the cultures from the growth and protein lines, but not from the growth + fitness line, exhibited larger protein:DNA ratios (cell size) than the control cultures. Cell cultures from the selected lines were more responsive to serum and epidermal growth factor in terms of [(3)H] thymidine incorporation into DNA, whereas no stimulation by insulin or insulin-like growth factor-I was detectable in cultures from selected lines or controls. During differentiation, protein metabolism in cultures from selected lines was characterised by higher rates of protein synthesis (PS) and degradation (PD), as measured by [(3)H] phenylalanine incorporation or release, respectively, than in control cells. The ratios of the relative differences from the control in PS and PD were only >1.0 in the growth and protein lines. In conclusion, long-term selection for growth therefore modifies the intrinsic capability of satellite cells for proliferation and protein metabolism, with changes being dependent on the selection trait.  相似文献   

20.
The effects of gamma-interferon (gamma-IFN) on the growth, morphology, and phenotypic expression of the human neuroblastoma (NB) cell line, LAN-1, have been extensively tested. Low doses of gamma-IFN allowing more than 90% cell viability induce morphological differentiation and growth inhibition. Cells exposed to gamma-IFN significantly decreased their growth rate, became smaller and poligonal, and sprouted long cellular processes with varicosities along their course, typical of the neurites seen in differentiated NB cells; morphological changes appeared within 48 h of culture with 1,000 U/ml gamma-IFN. The new morphological aspect reached the maximum expression after 6 days of culture, becoming more evident when fresh drug was added after 2 days of culture. A decrease in [3H]thymidine incorporation was also observed within 24 h; cell growth was completely inhibited at the 6th day. Membrane immunofluorescence showed several changes in NB-specific antigen expression after 6 days of treatment with gamma-IFN. At the same time gamma-IFN also modulated cytoskeletal proteins. These findings suggest that noncytotoxic doses of gamma-IFN do promote the differentiation of LAN-1 neuroblastoma cells which is associated with the reduced expression of the malignant phenotype.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号