首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Embryonic stem (ES) cells can be differentiated into insulin-producing cells by conditioning the culture media. However, the number of insulin-expressing cells and amount of insulin released is very low. Glucose-dependent insulinotropic polypeptide (GIP) enhances the growth and differentiation of pancreatic beta-cells. This study examined the potential of the stable analogue GIP(LysPAL16) to enhance the differentiation of mouse ES cells into insulin-producing cells using a five-stage culturing strategy. Semi-quantitative PCR indicated mRNA expression of islet development markers (nestin, Pdx1, Nkx6.1, Oct4), mature pancreatic beta-cell markers (insulin, glucagon, Glut2, Sur1, Kir6.1) and the GIP receptor gene GIP-R in undifferentiated (stage 1) cells, with increasing levels in differentiated stages 4 and 5. IAPP and somatostatin genes were only expressed in differentiated stages. Immunohistochemical studies confirmed the presence of insulin, glucagon, somatostatin and IAPP in differentiated ES cells. After supplementation with GIP(LysPAL16), ES cells at stage 4 released insulin in response to secretagogues and glucose in a concentration-dependent manner, with 35-100% increases in insulin release. Cellular C-peptide content also increased by 45% at stages 4 and 5. We conclude that the stable GIP analogue enhanced differentiation of mouse ES cells towards a phenotype expressing specific beta-cell genes and releasing insulin.  相似文献   

3.
OBJECTIVE: Islet amyloid polypeptide (IAPP)/amylin is produced by the pancreatic islet beta-cells, which also produce insulin. To study potential functions of IAPP, we have generated transgenic mice overexpressing human IAPP (hIAPP) in the beta-cells. These mice show a diabetic phenotype when challenged with an oral glucose load. In this study, we examined the islet cytoarchitecture in the hIAPP mice by examining islet cell distribution in the neonatal period, as well as 1, 3 and 6 months after birth. RESULTS: Neonatal transgenic mice exhibited normal islet cell distribution with beta-cells constituting the central islet portion, whereas glucagon and somatostatin-producing cells constituted the peripheral zone. In contrast, in hIAPP transgenic mice at the age of 1 month, the glucagon-immunoreactive (IR) cells were dispersed throughout the islets. Furthermore, at the age of 3 and 6 months, the islet organisation was similarly severely disturbed as at 1 month. Expression of both endogenous mouse IAPP and transgenic hIAPP was clearly higher in 6-month-old mice as compared to newborns, as revealed by mRNA in situ hybridisation. CONCLUSIONS: Mice transgenic for hIAPP have islets with disrupted islet cytoarchitecture in the postnatal period, particularly affecting the distribution of glucagon-IR cells. This islet cellular phenotype of hIAPP transgenic mice is similar to that of other mouse models of experimental diabetes and might contribute to the impaired glucose homeostasis.  相似文献   

4.
Summary An immunohistochemical study for islet amyloid polypeptide (IAPP) was made on the gastrointestinal (GI) tract and pancreas of man and rat, using antisera raised against a synthetic peptide of C-terminal human IAPP (24–37) and a synthetic peptide of rat IAPP (18–37). A large number of IAPP-immunoreactive cells were found in the pyloric antrum, and a small number in the body of the stomach in both man and rat. Cytoplasmic processes extended out from the bipolar peripheral region of the immunoreactive cells, rather like neuronal processes, and some appeared to make contact with other immunoreactive cells. In addition, small numbers of immunoreactive cells were also seen in the duodenum and rectum, whereas they were absent from the jejunum, ileum and large intestine. An examination was made for evidence of colocalization of IAPP-immunoreactive material with material immunoreactive for gastrin, somatostatin, vasoactive intestinal polypeptide, pancreatic polypeptide, insulin, and glucagon, but none was found. IAPP-immunoreactive cells were also found in the pancreas of non-diabetic and non-insulin-dependent diabetic patients, but they were completely absent from a patient with insulin-dependent diabetes mellitus despite the presence of IAPP in the plasma. The results of these studies suggest that the peptide may have a biological role in situ in the GI tract and, in addition to the pancreas, may be a possible source of plasma IAPP.  相似文献   

5.
Neuropeptide Y (NPY) inhibits insulin secretion. Increased numbers of pancreatic islet cells expressing NPY have been observed in type 1 diabetic rats. To understand the functional significance of NPY expression in islet cells, we investigated the effects of high fat feeding and diabetic conditions on the expression and location of NPY expressing cells in normal and diabetic rats. Twenty rats were maintained on either normal chow (ND) or a high fat dietary regimen (HFD) for 4 weeks. In half of each group, type 1 or type 2 diabetes (groups T1DM and T2DM, respectively) was induced by injection of streptozotocin. At 8 weeks rats were euthanized and the pancreases were processed for immunofluorescence labeling (NPY/insulin, NPY/glucagon, NPY/somatostatin, and NPY/pancreatic polypeptide). Compared with the ND group, HFD rats had significantly fewer alpha cells, but beta cells were similar, while T1DM and T2DM rats showed significant increases in the proportions of alpha, delta, and PP cells. Robust increases in NPY-positive islet cells were found in the HFD, T1DM, and T2DM rats compared with ND controls. In ND rats, 99.7% of the NPY-positive cells were PP cells. However, high fat feeding and diabetes resulted in significant increases in NPY-positive delta cells, with concomitant decreases in NPY-positive PP cells. In summary, high-fat feeding and diabetes resulted in changes in the hormonal composition of pancreatic islet and increased number of NPY-expressing islet cells. Under diabetic conditions NPY expression switched from predominantly a characteristic of PP cells to predominantly that of delta cells. This may be a factor in reduced pancreatic hormone secretion during diabetes.  相似文献   

6.
Spontaneous amyloidosis occurs in many nonhuman primate species but remains difficult to diagnose and treat. Nonhuman primates continue to offer promise as animal models in which to study amyloidosis in humans. Amyloidosis was not diagnosed clinically but was found histologically in four male and 36 female baboons. The baboons averaged 18 years of age at death (range, 7-28 years). Clinical signs, if present, were hyperglycemia and cachexia. Blood glucose values were elevated in 12 of 30 baboons with available clinical pathology data. Four baboons had been clinically diagnosed as diabetic and three were treated with insulin. Amyloid was found in the islets of Langerhans of the pancreas in 40 baboons; 35 baboons had amyloid only in the islets of Langerhans. Amyloid was found in nonislet tissue of baboons as follows: five, nonislet pancreas; four, intestine and adrenal; three, kidney; two, prostate and spleen; and one each, lymph node, liver, gall bladder, stomach, tongue, urinary bladder, and salivary gland. Sections of paraffin-embedded tissues were evaluated for amyloid with hematoxylin and eosin (HE) and congo red (CR) staining, and using immunohistochemistry for human islet amyloid polypeptide (IAPP), calcitonin gene-related peptide (CGRP), glucagon, pancreatic polypeptide (PP), somatostatin (SS), and porcine insulin. Islet amyloid was positive with HE in 40 baboons, with CR in 39 baboons, and with IAPP and CGRP in 35 baboons. IAPP and CGRP only stained islet amyloid. PP, SS, glucagon, and porcine insulin did not stain amyloid. Islet amyloidosis in the baboon appears to be difficult to diagnose clinically, age-related, and similar to islet amyloidosis in other species. The baboon may be a good model for the study of islet amyloidosis in humans.  相似文献   

7.
Somatostatin acts on specific membrane receptors (sst(1-5)) to inhibit exocrine and endocrine functions. The aim was to investigate the distribution of sst(1-5) in pancreatic islet cells in normal mice and rats. Pancreatic samples from five adult C57BL/6 mice and Sprague-Dawley rats were stained with antibodies against sst(1-5) and insulin, glucagon, somatostatin, or pancreatic polypeptide (PP). A quantitative analysis of the co-localization was performed. All ssts were expressed in the pancreatic islets and co-localized on islet cells to various extents. A majority of the beta-cells expressed sst(1-2) and sst(5) in mouse islets, while < or =50% in the rat expressed sst(1-5). The expression of sst(1-5) on alpha-cells did not differ much among species, with sst(2) and sst(5) being highly expressed. About 70% of the delta-cells expressed sst(1-4) in the rat pancreas, whereas 50% of the islet cells expressed sst(1-5) in the mouse. Furthermore, 60% of the PP-cells expressed sst(1-5) in the mouse, while the rat islets had lower values. Co-expression with the four major islet hormones varies among species and sst subtypes. These similarities and differences are interesting and need further evaluation to elucidate their physiological role in islets.  相似文献   

8.
To analyze cell lineage in the pancreatic islets, we have irreversibly tagged all the progeny of cells through the activity of Cre recombinase. Adult glucagon alpha and insulin beta cells are shown to derive from cells that have never transcribed insulin or glucagon, respectively. Also, the beta-cell progenitors, but not alpha-cell progenitors, transcribe the pancreatic polypeptide (PP) gene. Finally, the homeodomain gene PDX1, which is expressed by adult beta-cells, is also expressed by alpha-cell progenitors. Thus the islet alpha- and beta-cell lineages appear to arise independently during ontogeny, probably from a common precursor.  相似文献   

9.
The endocrine pancreas of the Australian brush-tailed possum (Trichosurus vulpecula) was investigated by means of immunocytochemistry using the avidin-biotin-peroxidase technique. This was a light microscopic study using this established technique. Serial paraffin sections were stained individually with primary antibodies for glucagon, insulin, somatostatin, and pancreatic polypeptide (PP), showing the same islet. Cells immunoreactive to glucagon, insulin, somatostatin and PP were found in endocrine islets. PP cells appear to be scattered amidst the exocrine portion also. Insulin immunoreactive cells were located in the central region of islet, glucagon in the periphery, somatostatin in periphery and had elongated processes. PP cells were more sparse and located both in the periphery of islet and amidst the exocrine tissue. These results can then be related to a similar study in the same marsupial, but using the immunofluorescence technique and to studies in other marsupials such as grey kangaroo (Macropus fuliginosus) fat-tailed dunnart (Sminthopsis crasicaudata) and the American opossum (Didelphis virginiana). These investigations are part of a study in Australian mammals.  相似文献   

10.
Antibodies to insulin, glucagon, pancreatic polypeptide hormone (PP) and somatostatin were used in the immunofluorescence histochemical procedure to study the ontogeny of pancreatic endocrine cells containing the four hormones in the bovine fetus of approximately 100 days gestation to term. Pancreatic sections from the bovine neonate and adult were also examined for the cellular distribution of the four hormones. Immunoreactive cells staining for insulin, glucagon, PP and somatostatin were present in the pancreas of all fetuses studied. Each endocrine cell type displayed a characteristic distribution within the developing pancreas and in the neonate and adult. The presence of the four islet hormones relatively early in bovine fetal life suggests that they may be important in intra- and extra-islet metabolism in the fetus.  相似文献   

11.
Polyhormonal aspect of the endocrine cells of the human fetal pancreas   总被引:7,自引:0,他引:7  
Histological studies were performed on 30 pancreases obtained from normal human fetuses aged between the 9th and 38th week. For immunocytochemistry, the avidin-biotin-peroxidase method was used to identify and colocalise insulin, glucagon, somatostatin, pancreatic polypeptide and proliferating cell nuclear antigen. In the 9th week, cells containing all investigated peptides were present. During the fetal period, two populations of endocrine cells have been distinguished, Langerhans islets and freely dispersed cells. The free cells were polyhormonal, containing insulin, glucagon, somatostatin and pancreatic polypeptide, and were localised in the walls of pancreatic ducts throughout the whole gland. During the development of the islets we have observed four stages: (1) the scattered polyhormonal cell stage (9th–10th week), (2) the immature polyhormonal islet stage (11th–15th week), (3) the insulin monohormonal core islet stage (16th–29th week), in which zonular and mantle islets are observed, and (4) the polymorphic islet stage (from the 30th week onwards), which is characterised by the presence of monohormonal cells expressing glucagon or somatostatin. Bigeminal and polar islets also appeared during this last stage. The islets consisted of an insulin core surrounded by a thick (in the part developing from the dorsal primordium) or thin rim (part of the pancreas concerned with the ventral primordium) of intermingled mono- or dihormonal glucagon-positive or somatostatin-positive cells. The most externally located polyhormonal cells exhibited a reaction for glucagon, somatostatin and pancreatic polypeptide. Apart from the above-mentioned types of islets, all arrangements observed in earlier stages were present. Proliferating cell nuclear antigen-positive cells (single in the large islets and more numerous in the smaller ones) were predominantly observed in the outermost layer. Taken together our data indicate that, during the human prenatal development of the islet, endocrine cells are able to synthesise several different hormones. Maturation of these cells involved or depended on a change from a polyhormonal to a monohormonal state and is concerned with decreasing proliferative capacity. This supports the concept of a common precursor stem cell for the hormone-producing cells of the fetal human pancreas. Accepted: 1 June 1999  相似文献   

12.
Islet alpha- and delta-cells are spared autoimmune destruction directed at beta-cells in type 1 diabetes resulting in an apparent increase of non-beta endocrine cells in the islet core. We determined how islet remodeling in autoimmune diabetes compares to streptozotocin (STZ)-induced diabetes. Islet cell mass, proliferation, and immune cell infiltration in pancreas sections from diabetic NOD mice and mice with STZ-induced diabetes was assessed using quantitative image analysis. Serial sections were stained for various beta-cell markers and Ngn3, typically restricted to embryonic tissue, was only upregulated in diabetic NOD mouse islets. Serum levels of insulin, glucagon and GLP-1 were measured to compare hormone levels with respect to disease state. Total pancreatic alpha-cell mass did not change as autoimmune diabetes developed in NOD mice despite the proportion of islet area comprised of alpha- and delta-cells increased. By contrast, alpha- and delta-cell mass was increased in mice with STZ-induced diabetes. Serum levels of glucagon reflected these changes in alpha-cell mass: glucagon levels remained constant in NOD mice over time but increased significantly in STZ-induced diabetes. Increased serum GLP-1 levels were found in both models of diabetes, likely due to alpha-cell expression of prohormone convertase 1/3. Alpha- or delta-cell mass in STZ-diabetic mice did not normalize by replacement of insulin via osmotic mini-pumps or islet transplantation. Hence, the inflammatory milieu in NOD mouse islets may restrict alpha-cell expansion highlighting important differences between these two diabetes models and raising the possibility that increased alpha-cell mass might contribute to the hyperglycemia observed in the STZ model.  相似文献   

13.
Although it is agreed that autoimmune destruction of pancreatic islets in diabetic BB rats is rapid, reports of endocrine cell content of islets from BB diabetic rats at the time of onset of diabetes vary considerably. Because of the rapid onset of the disease (hours) and the attendant changes in islet morphology and insulin secretion, it was the aim of this study to compare islet beta-cell numbers to other islet endocrine cells as close to the time of onset of hyperglycemia as possible (within 12 h). As it has been reported that hyperglycemia renders the beta cell insensitive to glucose, the early effects of different levels of insulin therapy (well-controlled vs. poorly controlled glycemia) on islet morphology and insulin secretion were examined. When measured within 12 h of onset, insulin content of BB diabetic islets, measured by morphometric analysis or pancreatic extraction, was 60% of insulin content of control islets. Despite significant amounts of insulin remaining in the pancreas, 1-day diabetic rats exhibited fasting hyperglycemia and were glucose intolerant. The insulin response from the isolated perfused pancreas to glucose and the glucose-dependent insulinotropic hormone, gastric inhibitory polypeptide (GIP), was reduced by 95%. Islet content of other endocrine peptides, glucagon, somatostatin, and pancreatic polypeptide, was normal at onset and at 2 weeks post onset. A group of diabetic animals, maintained in a hyperglycemic state for 7 days with low doses of insulin, were compared with a group kept normoglycemic by appropriate insulin therapy. No insulin could be detected in islets of poorly controlled diabetics, while well-controlled animals had 30% of the normal islet insulin content.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
15.
Summary Rats rendered diabetic by streptozotocin were subjected to pancreas transplantation. After twenty weeks, the duct-ligated pancreas transplant was studied morphometrically to determine the effect of duct occlusion on the various cell populations of the islets. Concomitantly, the streptozotocin-treated host pancreas was examined for a possible influence of the graft on the diabetic pattern of islet cell population. Twenty weeks after pancreas transplantation, the volume fractions of insulin, glucagon, somatostatin and pancreatic polypeptide cells in the graft islets did not differ from those of the normal control pancreas. In the pancreas of nontransplanted diabetic rats, insulin-positive B cells were reduced from 60–65% to less than 10% of the islet volume, whereas non-B cells were significantly increased in volume density. The changes in fractional volume of the various islet cells correlated fairly well with changes in plasma concentration of the corresponding pancreas hormones. In the recipient's own pancreas, the relative volumes of glucagon and somatostatin cells were unaffected by the pancreas transplant. However, the insulin cell mass was significantly increased, and comprised about 20% of the islet volume, while cells containing pancreatic polypeptide were found only sporadically.Supported by Nordic Insulin Fund, The Swedish Diabetes Association, and MFR, proj. no. 4499. The technical assistance by M. Maxe and M. Carlesson is gratefully acknowledged  相似文献   

16.
17.
We have studied the influence of a wide concentration range of islet amyloid polypeptide (IAPP) on both glucagon and insulin release stimulated by various types of secretagogues. In an islet incubation medium devoid of glucose, the rate of glucagon release being high, we observed a marked suppressive action by low concentrations of IAPP, 10(-10) and 10(-8) M, on glucagon release. Similarly, glucagon release stimulated by L-arginine, the cholinergic agonist carbachol, or the phosphodiesterase inhibitor isobutylmethyl xanthine (IBMX), an activator of the cyclic AMP system, was inhibited by IAPP in the 10(-10) and 10(-8) M concentration range. Moreover, basal glucagon release at 7 and 10 mM glucose was suppressed by IAPP. In contrast, IAPP exerted a dual action on insulin release. Hence, low concentrations of IAPP brought about a modest increase of basal insulin secretion at 7 mM glucose and also of insulin release stimulated by carbachol. High concentrations of IAPP, however, inhibited insulin release stimulated by glucose (10 and 16.7 mM), IBMX, carbachol and L-arginine. In conclusion, our data suggest that IAPP has complex effects on islet hormone secretion serving as an inhibitor of glucagon release and having a dual action on insulin secretion exerting mainly a negative feedback on stimulated and a positive feedback on basal insulin release.  相似文献   

18.
Summary It was previously demonstrated that the two chemically related peptides calcitonin gene-related peptide (CGRP) and islet amyloid polypeptide (IAPP) both occur in the pancreas. We have now examined the cellular localization of CGRP and IAPP in the rat and the mouse pancreas. We found, in both the rat and the mouse pancreas, CGRP-immunoreactive nerve fibers throughout the parenchyma, including the islets, with particular association with blood vessels. CGRP-immunoreactive nerve fibers were regularly seen within the islets. In contrast, no IAPP-immunoreactive nerve fibers were demonstrated in this location. Furthermore, in rat islets, CGRP immunoreactivity was demonstrated in peripherally located cells, constituting a major subpopulation of the somatostatin cells. Such cells were lacking in the mouse islets. IAPP-like immunoreactivity was demonstrated in rat and mouse islet insulin cells, and, in the rat, also in a few non-insulin cells in the islet periphery. These cells seemed to be identical with somatostatin/CGRP-immunoreactive elements. In summary, the study shows (1) that CGRP, but not IAPP, is a pancreati neuropeptide both in the mouse and the rat; (2) that a subpopulation of rat somatostatin cells contain CGRP; (3) that mouse islet endocrine cells do not contain CGRP; (4) that insulin cells in both the rat and the mouse contain IAPP; and (5) that in the rat, a non-insulin cell population apparently composed of somatostatin cells stores immunoreactive IAPP. We conclude that CGRP is a pancreatic neuropeptide and IAPP is an islet endocrine peptide in both the rat and the mouse, whereas CGRP is an islet endocrine peptide in the rat.  相似文献   

19.
Bouin-fixed tissues from non-diabetic adult human pancreata display an argyrophil reaction mainly in the periphery of the islets with the silver technique of Sevier-Munger. The nature of these argyrophil cells was examined after restaining by an indirect immunocytochemical method using antibodies against insulin, glucagon, somatostatin and pancreatic polypeptide. After this procedure the argyrophil cells were identified as glucagon (A-) cells and pancreatic polypeptide (PP-) cells, although the latter exhibited a weaker reaction. The insulin (B-) cells and somatostatin (D-) cells were unreactive. The results show that the Seiver-Munger stain is of equal value to the Grimelius silver nitrate stain in adult human pancreatic islets after fixation in Bouin's fluid.  相似文献   

20.
Pancreatic islet cell hyperplasia was studied in hamsters during one to eight weeks of cortisone treatment. Measurement of serum glucose and insulin; pancreatic insulin, glucagon, somatostatin, pancreatic polypeptide as well as islet tissue morphometry were performed. Serum glucose was highest at week 2, followed by mild to moderate hyperglycemia. Serum insulin was increasingly higher from week 1 to week 8. Pancreatic insulin was maximal at week 5 then declined through week 8 in the presence of beta cell neurosis in markedly hyperplastic islets. Pancreatic concentration of somatostatin and pancreatic polypeptide moderately increased more than the control levels; however, compared with the controls, glucagon was reduced by cortisone treatment. Effect of cortisone in the four types of islet cells is discussed, particularly on beta cell hyperplasia, which appears to be a response to decreased insulin binding to the target organs with no changes in receptor concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号