首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The immergence and dissemination of multidrug-resistant strains of Staphylococcus aureus in recent years have expedited the research on the discovery of novel anti-staphylococcal agents promptly. Bacteriophages have long been showing tremendous potentialities in curing the infections caused by various pathogenic bacteria including S. aureus. Thus far, only a few virulent bacteriophages, which do not carry any toxin-encoding gene but are capable of eradicating staphylococcal infections, were reported. Based on the codon usage analysis of sixteen S. aureus phages, previously three phages were suggested to be useful as the anti-staphylococcal agents. To search for additional S. aureus phages suitable for phage therapy, relative synonymous codon usage bias has been investigated in the protein-coding genes of forty new staphylococcal phages. All phages appeared to carry A and T ending codons. Several factors such as mutational pressure, translational selection and gene length seemed to be responsible for the codon usage variation in the phages. Codon usage indeed varied phage to phage. Of the phages, phages G1, Twort, 66 and Sap-2 may be extremely lytic in nature as majority of their genes possess high translational efficiency, indicating that these phages may be employed in curing staphylococcal infections.  相似文献   

3.
The initiation of DNA replication requires the melting of chromosomal origins to provide a template for replisomal polymerases. In bacteria, the DnaA initiator plays a key role in this process, forming a large nucleoprotein complex that opens DNA through a complex and poorly understood mechanism. Using structure-guided mutagenesis, biochemical, and genetic approaches, we establish an unexpected link between the duplex DNA-binding domain of DnaA and the ability of the protein to both self-assemble and engage single-stranded DNA in an ATP-dependent manner. Intersubunit cross-talk between this domain and the DnaA ATPase region regulates this link and is required for both origin unwinding in vitro and initiator function in vivo. These findings indicate that DnaA utilizes at least two different oligomeric conformations for engaging single- and double-stranded DNA, and that these states play distinct roles in controlling the progression of initiation.  相似文献   

4.
Understanding the extent and causes of biases in codon usage and nucleotide composition is essential to the study of viral evolution, particularly the interplay between viruses and host cells or immune responses. To understand the common features and differences among viruses we analyzed the genomic characteristics of a representative collection of all sequenced vertebrate-infecting DNA viruses. This revealed that patterns of codon usage bias are strongly correlated with overall genomic GC content, suggesting that genome-wide mutational pressure, rather than natural selection for specific coding triplets, is the main determinant of codon usage. Further, we observed a striking difference in CpG content between DNA viruses with large and small genomes. While the majority of large genome viruses show the expected frequency of CpG, most small genome viruses had CpG contents far below expected values. The exceptions to this generalization, the large gammaherpesviruses and iridoviruses and the small dependoviruses, have sufficiently different life-cycle characteristics that they may help reveal some of the factors shaping the evolution of CpG usage in viruses. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Nicolas Galtier]  相似文献   

5.
On the basis of limited information, bacteria were once assumed to have no more than one chromosome. In the era of genomics, it has become clear that some, like eukaryotes, have more than one chromosome. Multichromosome bacteria provide opportunities to investigate how split genomes emerged, whether the individual chromosomes communicate to coordinate their replication and segregation, and what selective advantages split genomes might provide. Our current knowledge of these topics comes mostly from studies in Vibrio cholerae, which has two chromosomes, chr1 and chr2. Chr1 carries out most of the house-keeping functions and is considered the main chromosome, whereas chr2 appears to have originated from a plasmid and has acquired genes of mostly unknown origin and function. Nevertheless, unlike plasmids, chr2 replicates once and only once per cell cycle, like a bona fide chromosome. The two chromosomes replicate and segregate using separate programs, unlike eukaryotic chromosomes. They terminate replication synchronously, suggesting that there might be communication between them. Replication of the chromosomes is affected by segregation genes but in a chromosome specific fashion, a new development in the field of DNA replication control. The split genome allows genome duplication to complete in less time and with fewer replication forks, which could be beneficial for genome maintenance during rapid growth, which is the norm for V. cholerae in broth cultures and in the human host. In the latter, the expression of chr2 genes increases preferentially. Studies of chromosome maintenance in multichromosomal bacteria, although in their infancy, are already broadening our view of chromosome biology. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

6.
Pie MR  Torres RA  Brito DM 《Genetica》2007,131(1):51-58
Despite remarkable advances in genomic studies over the past few decades, surprisingly little is known about the processes governing genome evolution at macroevolutionary timescales. In a seminal paper, Hinegardner and Rosen (Am Nat 106:621–644, 1972) suggested that taxa characterized by larger genomes should also display disproportionately stronger fluctuations in genome size. Therefore, according to the Hinegardner and Rosen (HR) hypothesis, there should be a negative correlation between average within-family genome size and its corresponding coefficient of variation (CV), a prediction that was supported by their analysis of the genomes of 275 species of fish. In this study we reevaluate the HR hypothesis using an expanded dataset (2050 genome size records). Moreover, in addition to the use of standard linear regression techniques, we also conducted modern comparative analyses that take into account phylogenetic non-independence. Our analyses failed to confirm the negative relationship detected in the original study, suggesting that the evolution of genome size in fishes might be more complex than envisioned by the HR hypothesis. Interestingly, the frequency distribution of fish genome sizes was strongly skewed, even on a logarithmic scale, suggesting that the dynamics underlying genome size evolution are driven by multiplicative phenomena, which might include chromosomal rearrangements and the expansion of transposable elements.  相似文献   

7.
Evidence from a variety of sources indicates that selection has influenced synonymous codon usage in Drosophila. It has generally been difficult, however, to distinguish selection that acted in the distant past from ongoing selection. However, under a neutral model, polymorphisms usually reflect more recent mutations than fixed differences between species and may, therefore, be useful for inferring recent selection. If the ancestral state is preferred, selection should shift the frequency distribution of derived states/site toward lower values; if the ancestral is unpreferred, selection should increase the number of derived states/site. Polymorphisms were classified as ancestrally preferred or unpreferred for several genes of D. simulans and D. melanogaster. A computer simulation of coalescence was employed to derive the expected frequency distributions of derived states/site under various modifications of the Wright–Fisher neutral model, and distributions of test statistics (t and Mann–Whitney U) were derived by appropriate sampling. One-tailed tests were applied to transformed frequency data to assess whether the two frequency distributions deviated from neutral expectations in the direction predicted by selection on codon usage. Several genes from D. simulans appear to be subject to recent selection on synonymous codons, including one gene with low codon bias, esterase-6. Selection may also be acting in D. melanogaster. Received: 15 April 1998 / Accepted: 13 May 1999  相似文献   

8.
Isolation of genes encoding catalysts for defined chemical reactions should be facilitated by selection of proteins for catalysis from molecular repertoires. Display of proteins on phage allows the coupling between a protein and its gene. Furthermore, if the reaction product can be linked to the phage enzyme catalyzing the reaction, affinity chromatography for the product yields the protein catalyzing the reaction and its gene. One main advantage of this selection method is that it can be in principle generalized to most chemical reactions.

Here, iterative in vitro selections for polymerase activity were used to isolate a single phage-polymerase among more than 108 phage particles. Three to five selection cycles were required depending on the fraction of infectious phage-polymerases in the initial phage population. This is the first report quantifying the enrichment over iterative selection rounds for the isolation of rare catalysts displayed on phage.  相似文献   

9.
Abstract

Isolation of genes encoding catalysts for defined chemical reactions should be facilitated by selection of proteins for catalysis from molecular repertoires. Display of proteins on phage allows the coupling between a protein and its gene. Furthermore, if the reaction product can be linked to the phage enzyme catalyzing the reaction, affinity chromatography for the product yields the protein catalyzing the reaction and its gene. One main advantage of this selection method is that it can be in principle generalized to most chemical reactions.

Here, iterative in vitro selections for polymerase activity were used to isolate a single phage-polymerase among more than 108 phage particles. Three to five selection cycles were required depending on the fraction of infectious phage-polymerases in the initial phage population. This is the first report quantifying the enrichment over iterative selection rounds for the isolation of rare catalysts displayed on phage.  相似文献   

10.
Brian Charlesworth 《Genetics》2013,194(4):955-971
Genomic traits such as codon usage and the lengths of noncoding sequences may be subject to stabilizing selection rather than purifying selection. Mutations affecting these traits are often biased in one direction. To investigate the potential role of stabilizing selection on genomic traits, the effects of mutational bias on the equilibrium value of a trait under stabilizing selection in a finite population were investigated, using two different mutational models. Numerical results were generated using a matrix method for calculating the probability distribution of variant frequencies at sites affecting the trait, as well as by Monte Carlo simulations. Analytical approximations were also derived, which provided useful insights into the numerical results. A novel conclusion is that the scaled intensity of selection acting on individual variants is nearly independent of the effective population size over a wide range of parameter space and is strongly determined by the logarithm of the mutational bias parameter. This is true even when there is a very small departure of the mean from the optimum, as is usually the case. This implies that studies of the frequency spectra of DNA sequence variants may be unable to distinguish between stabilizing and purifying selection. A similar investigation of purifying selection against deleterious mutations was also carried out. Contrary to previous suggestions, the scaled intensity of purifying selection with synergistic fitness effects is sensitive to population size, which is inconsistent with the general lack of sensitivity of codon usage to effective population size.  相似文献   

11.
We investigate the evolutionary dynamics of a finite population of RNA sequences replicating on a neutral network. Despite the lack of differential fitness between viable sequences, we observe typical properties of adaptive evolution, such as increase of mean fitness over time and punctuated-equilibrium transitions, after initial mutation-selection balance has been reached. We find that a product of population size and mutation rate of approximately 30 or larger is sufficient to generate selection pressure for mutational robustness, even if the population size is orders of magnitude smaller than the neutral network on which the population resides. Our results show that quasispecies effects and neutral drift can occur concurrently, and that the relative importance of each is determined by the product of population size and mutation rate.  相似文献   

12.
Miniature chromosome maintenance 7 (MCM7) is an essential component of DNA replication licensing complex. Recent studies indicate that MCM7 is amplified and overexpressed in a variety of human malignancies. In this report, we show that MCM7 binds SF3B3. The binding motif is located in the N terminus (amino acids 221–248) of MCM7. Knockdown of MCM7 or SF3B3 significantly increased unspliced RNA of epidermal growth factor receptor, platelet-derived growth factor receptor, and c-Met. A dramatic drop of reporter gene expression of the oxytocin exon 1-intron-exon 2-EGFP construct was also identified in SF3B3 and MCM7 knockdown PC3 and DU145 cells. The MCM7 or SF3B3 depleted cell extract failed to splice reporter RNA in in vitro RNA splicing analyses. Knockdown of SF3B3 and MCM7 leads to an increase of cell death of both PC3 and DU145 cells. Such cell death induction is partially rescued by expressing spliced c-Met. To our knowledge, this is the first report suggesting that MCM7 is a critical RNA splicing factor, thus giving significant new insight into the oncogenic activity of this protein.  相似文献   

13.
    
Crimean-Congo hemorrhagic fever (CCHF) virus is one among the major zoonosis viral diseases that use the Hyalomma ticks as their transmission vector to cause viral infection to the human and mammalian community. The fatality of infectious is high across the world especially in Africa, Asia, Middle East, and Europe. This study regarding codon usage bias of S, M, and L segments of the CCHF virus pertaining to the host Homo sapiens, reveals in-depth information about the evolutionary characteristics of CCHFV. Relative Synonymous Codon Usage (RSCU), Effective number of codons (ENC) were calculated, to determine the codon usage pattern in each segment. Correlation analysis between Codon adaptation index (CAI), GRAVY (Hydrophobicity), AROMO (Aromaticity), and nucleotide composition revealed bias in the codon usage pattern. There was no strong codon bias found among any segments of the CCHF virus, indicating both the factors i.e., natural selection and mutational pressure shapes the codon usage bias.  相似文献   

14.
Summary The sequence homology in the single copy DNA of sea stars has been measured. Labeled single copy DNA fromPisaster ochraceus was reannealed with excess genomic DNA fromP. brevispinus, Evasterias troschelii, Pycnopodia helianthoides, Solaster stimpsoni, andDermasterias imbricata. Reassociation reactions were performed under two criteria of salt and temperature. The extent of reassociation and thermal denaturation characteristics of hybrid single copy DNA molecules follow classical taxonomic lines.P. brevispinus DNA contains essentially all of the sequences present inP. ochraceus single copy tracer whileEvasterias andPycnopodia DNAs contain 52% and 46% of such sequences respectively. Reciprocal reassociation reactions with labeledEvasterias single copy DNA confirm the amount and fidelity of the sequence homology. There is a small definite reaction of uncertain homology betweenP. ochraceus single copy DNA andSolaster orDermasterias DNA. SimilarlySolaster DNA contains sequences homologous to approximately 18% ofDermasterias unique DNA. The thermal denaturation temperatures of heteroduplexes indicate that the generaPisaster andEvasterias diverged shortly after the divergence of the subfamilies Pycnopodiinae and Asteriinae. The twoPisaster species diverged more recently, probably in the most recent quarter of the interval since the separation of the generaPisaster andEvasterias.  相似文献   

15.
A genome-wide scan to detect evidence of selection was conducted in the Golden Glow maize long-term selection population. The population had been subjected to selection for increased number of ears per plant for 30 generations, with an empirically estimated effective population size ranging from 384 to 667 individuals and an increase of more than threefold in the number of ears per plant. Allele frequencies at >1.2 million single-nucleotide polymorphism loci were estimated from pooled whole-genome resequencing data, and FST values across sliding windows were employed to assess divergence between the population preselection and the population postselection. Twenty-eight highly divergent regions were identified, with half of these regions providing gene-level resolution on potentially selected variants. Approximately 93% of the divergent regions do not demonstrate a significant decrease in heterozygosity, which suggests that they are not approaching fixation. Also, most regions display a pattern consistent with a soft-sweep model as opposed to a hard-sweep model, suggesting that selection mostly operated on standing genetic variation. For at least 25% of the regions, results suggest that selection operated on variants located outside of currently annotated coding regions. These results provide insights into the underlying genetic effects of long-term artificial selection and identification of putative genetic elements underlying number of ears per plant in maize.  相似文献   

16.
In the plant chloroplast genome the codon usage of the highly expressed psbA gene is unique and is adapted to the tRNA population, probably due to selection for translation efficiency. In this study the role of selection on codon usage in each of the fully sequenced chloroplast genomes, in addition to Chlamydomonas reinhardtii, is investigated by measuring adaptation to this pattern of codon usage. A method is developed which tests selection on each gene individually by constructing sequences with the same amino acid composition as the gene and randomly assigning codons based on the nucleotide composition of noncoding regions of that genome. The codon bias of the actual gene is then compared to a distribution of random sequences. The data indicate that within the algae selection is strong in Cyanophora paradoxa, affecting a majority of genes, of intermediate intensity in Odontella sinensis, and weaker in Porphyra purpurea and Euglena gracilis. In the plants, selection is found to be quite weak in Pinus thunbergii and the angiosperms but there is evidence that an intermediate level of selection exists in the liverwort Marchantia polymorpha. The role of selection is then further investigated in two comparative studies. It is shown that average relative codon bias is correlated with expression level and that, despite saturation levels of substitution, there is a strong correlation among the algae genomes in the degree of codon bias of homologous genes. All of these data indicate that selection for translation efficiency plays a significant role in determining the codon bias of chloroplast genes but that it acts with different intensities in different lineages. In general it is stronger in the algae than the higher plants, but within the algae Euglena is found to have several unusual features which are noted. The factors that might be responsible for this variation in intensity among the various genomes are discussed. Received: 6 June 1997 / Accepted: 24 July 1997  相似文献   

17.
The innate immune system constitutes the front line of host defense against pathogens. Toll-like receptors (TLRs) recognize molecules derived from pathogens and play crucial roles in the innate immune system. Here, we provide evidence that the TLR-related genes have come under natural selection pressure in the course of primate evolution. We compared the nucleotide sequences of 16 TLR-related genes, including TLRs (TLR1–10), MYD88, TILAP, TICAM1, TICAM2, MD2, and CD14, among seven primate species. Analysis of the non-synonymous/synonymous substitution ratio revealed the presence of both strictly conserved and rapidly evolving regions in the TLR-related genes. The genomic segments encoding the intracellular Toll/interleukin 1 receptor domains, which exhibited lower rates of non-synonymous substitution, have undergone purifying selection. In contrast, TLR4, which carried a high proportion of non-synonymous substitutions in the part of extracellular domain spanning 200 amino acids, was found to have been the suggestive target of positive Darwinian selection in primate evolution. However, sequence analyses from 25 primate species, including eight hominoids, six Old World monkeys, eight New World monkeys, and three prosimians, showed no evidence that the pressure of positive Darwinian selection has shaped the pattern of sequence variations in TLR4 among New World monkeys and prosimians. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
 Three lines of the tetraploid wheat Aegilops ventricosa Tausch (2n=4x=28), which contains good resistance to eyespot, were analysed using fluorescent in situ hybridization. Probes used included rDNA, cloned repeated sequences from wheat and rye, simple-sequence repeats (SSRs) and total genomic DNA. The banding patterns produced could be used to distinguish most chromosome arms and will aid in the identification of Ae. ventricosa chromosomes or chromosome segments in breeding programmes. All lines had a single major 18S-25S rDNA site, the nucleolar organizing region (NOR) in chromosome 5N and several minor sites of 18S-25S rDNA and 5S rDNA. A 1NL.3DL, 1NS.3DS translocation was identified, and other minor differences were found between the lines. Received: 11 August 1998 / Accepted: 28 November 1998  相似文献   

19.
In many organisms, synonymous codon usage is biased by a history of natural selection. However, codon bias, itself, does not indicate that selection is ongoing; it may be a vestige of past selection. Simple statistical tests have been devised to infer ongoing selection on codon usage by comparing the derived state frequency spectra at polymorphic sites segregating either derived preferred codons or derived unpreferred codons; if selection is effective, the frequency of derived states should be higher in the former. We propose a new test that uses the inferred degree of preference, essentially calculating the correlation of derived state frequency and the difference in preference between the derived and the ancestral states; the correlation should be positive if selection is effective. When implementing the test, derived and ancestral states can be assigned by parsimony or on the basis of relative probability. In either case, statistical significance is estimated by a simple permutation test. We explored the statistical power of the test by sampling polymorphism data from 14 loci in 16 strains of D. simulans, finding that the test retains 80% power even when quite a few of the data are discarded. The power of the test likely reflects better use of multiple features of the data, combining population frequencies of polymorphic variants and quantitative estimates of codon preferences. We also applied this novel test to 14 newly sequenced loci in five strains of D. mauritiana, showing for the first time ongoing selection on codon usage in this species.  相似文献   

20.
On the basis of established knowledge of microbial genetics one can distinguish three major natural strategies in the spontaneous generation of genetic variations in bacteria. These strategies are: (1) small local changes in the nucleotide sequence of the genome, (2) intragenomic reshuffling of segments of genomic sequences and (3) the acquisition of DNA sequences from another organism. The three general strategies differ in the quality of their contribution to microbial evolution. Besides a number of non-genetic factors, various specific gene products are involved in the generation of genetic variation and in the modulation of the frequency of genetic variation. The underlying genes are called evolution genes. They act for the benefit of the biological evolution of populations as opposed to the action of housekeeping genes and accessory genes which are for the benefit of individuals. Examples of evolution genes acting as variation generators are found in the transposition of mobile genetic elements and in so-called site-specific recombination systems. DNA repair systems and restriction-modification systems are examples of modulators of the frequency of genetic variation. The involvement of bacterial viruses and of plasmids in DNA reshuffling and in horizontal gene transfer is a hint for their evolutionary functions. Evolution genes are thought to undergo biological evolution themselves, but natural selection for their functions is indirect, at the level of populations, and is called second-order selection. In spite of an involvement of gene products in the generation of genetic variations, evolution genes do not programmatically direct evolution towards a specific goal. Rather, a steady interplay between natural selection and mixed populations of genetic variants gives microbial evolution its direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号