首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The INNER NO OUTER (INO) and AINTEGUMENTA (ANT) genes are essential for ovule integument development in Arabidopsis thaliana. Ovules of ino mutants initiate two integument primordia, but the outer integument primordium forms on the opposite side of the ovule from the normal location and undergoes no further development. The inner integument appears to develop normally, resulting in erect, unitegmic ovules that resemble those of gymnosperms. ino plants are partially fertile and produce seeds with altered surface topography, demonstrating a lineage dependence in development of the testa. ant mutations affect initiation of both integuments. The strongest of five new ant alleles we have isolated produces ovules that lack integuments and fail to complete megasporogenesis. ant mutations also affect flower development, resulting in narrow petals and the absence of one or both lateral stamens. Characterization of double mutants between ant, ino and other mutations affecting ovule development has enabled the construction of a model for genetic control of ovule development. This model proposes parallel independent regulatory pathways for a number of aspects of this process, a dependence on the presence of an inner integument for development of the embryo sac, and the existence of additional genes regulating ovule development.  相似文献   

7.
8.
9.
The developmental morphology of the outer integument in the pendent orthotropous ovules of Amborella trichopoda (Amborellaceae) and Chloranthus serratus (Chloranthaceae) was studied. In both species the outer integument is semiannular at an early stage and becomes cup-shaped but dorsiventrally somewhat asymmetric at later stages. The outer integument, which is initiated first on the concave and lateral sides of the ovule, differs from that of the anatropous ovules of other basal families with the outer integument semiannular at an early stage or throughout development. The bilateral symmetry of the outer integument is shared by these orthotropous and anatropous ovules. The developmental pattern of the outer integument and ovule incurving characterize the ovule of the Amborellaceae and Chloranthaceae, which is not equivalent to typical orthotropous ovules of eudicots. A phylogenetic analysis of ovule characters in basal angiosperms suggests that anatropous ovules with cup-shaped outer integuments and orthotropous ovules were derived independently in several clades and that the ovules of Amborella and Chloranthus might also be derivative.  相似文献   

10.
The micropyle and the integuments of sugar beet (Beta vulgaris) ovules have been investigated by light and electron microscopy during differentiation and maturation of the ovule. The micropyle itself is formed by the inner integument which is surrounded by the outer integument at its base. The micropyle containts a fibrillar PAS+ substance and is often covered by a thin sheet or hymen. Both integuments are cuticle-covered thin sheets, each 2-few cell layers in thickness. In the outer integument an increase in starch accumulation occurs during ovule maturation and probably functions as nutrient storage for embryo development. The inner epidermis of the inner integument differentiates as the most conspicuous cell layer of the beet ovule. During growth and maturation of the ovule a system of small perinuclear vacuoles containing dense material increases steadily in these cells. At maturity this system fills up more than half of each cell and very dense material has accumulated in each vacuole. This vacuole content is highly refractive and contains tannins and/or polyphenols.  相似文献   

11.
Establishment of polarity in lateral organs of plants   总被引:2,自引:0,他引:2  
BACKGROUND: Asymmetric development of plant lateral organs initiates by partitioning of organ primordia into distinct domains along their adaxial/abaxial axis. A recent model proposes that a meristem-born signal, acting in a concentration-dependent manner, differentially activates PHABULOSA-like genes, which in turn suppress abaxial-promoting factors. As yet, no abaxial factors have been identified that when compromised give rise to adaxialized organs. RESULTS: Single mutants in either of the closely related genes KANADI1 (KAN1) or KANADI2 (KAN2) have little or no effect on plant morphology. However, in kan1 kan2 double mutant plants, there is a replacement of abaxial cell types by adaxial ones in most lateral organs. The alterations in polarity establishment are associated with expansion in the expression domain of the PHB-like genes and reduction in the expression of the previously described abaxial-promoting YABBY genes. Ectopic expression of either of the KANADI genes throughout leaf primordia results in dramatic transformation of adaxial cell types into abaxial ones, failure of lateral blade expansion, and vascular tissue formation. CONCLUSION: The phenotypes of KANADI loss- and gain-of-function alleles suggest that fine regulation of these genes is at the core of polarity establishment. As such, they are likely to be targets of the PHB-mediated meristem-born signaling that patterns lateral organ primordia. PHB-like genes and the abaxial-promoting KANADI and YABBY genes appear to be expressed throughout primordia anlagen before becoming confined to their corresponding domains as primordia arise. This suggests that the establishment of polarity in plant lateral organs occurs via mutual repression interactions between ab/ad factors after primordium emergence, consistent with the results of classical dissection experiments.  相似文献   

12.
SUMMARY Santalales comprise mainly parasitic plants including mistletoes and sandalwoods. Bitegmic ovules similar to those found in most other angiosperms are seen in many members of the order, but other members exhibit evolutionary reductions to the unitegmic and ategmic conditions. In some mistletoes, extreme reduction has resulted in the absence of emergent ovules such that embryo sacs appear to remain embedded in placental tissues. Three santalalean representatives (Comandra, Santalum, and Phoradendron), displaying unitegmic, and ategmic ovules, were studied. Observed ovule morphologies were consistent with published reports, including Phoradendron serotinum, which we interpret as having reduced ategmic ovules, consistent with earlier reports on this species. For further understanding of the nature of the ovule reductions we isolated orthologs of the Arabidopsis genes AINTEGUMENTA (ANT) and BELL1 (BEL1), which are associated with ovule development in this species. We observed ovular expression of ANT and BEL1 in patterns largely resembling those seen in the integumented ovules of Arabidopsis. These genes were found to be expressed in the integument of unitegmic ovules and in the surface layers of ategmic ovules, and in some cases, expression of BEL1 was also observed in the surrounding carpel tissue. We hypothesize that ategmic ovules derive from a fusion of the integuments with the nucellus or that the nucellus has taken on some of the characteristics confined to integuments in ancestral species.  相似文献   

13.
14.
Ha CM  Jun JH  Nam HG  Fletcher JC 《The Plant cell》2007,19(6):1809-1825
We report a novel function for BLADE-ON-PETIOLE1 (BOP1) and BOP2 in regulating Arabidopsis thaliana lateral organ cell fate and polarity, through the analysis of loss-of-function mutants and transgenic plants that ectopically express BOP1 or BOP2. 35S:BOP1 and 35S:BOP2 plants exhibit a very short and compact stature, hyponastic leaves, and downward-orienting siliques. We show that the LATERAL ORGAN BOUNDARIES (LOB) domain genes ASYMMETRIC LEAVES2 (AS2) and LOB are upregulated in 35S:BOP and downregulated in bop mutant plants. Ectopic expression of BOP1 or BOP2 also results in repression of class I knox gene expression. We further demonstrate a role for BOP1 and BOP2 in establishing the adaxial-abaxial polarity axis in the leaf petiole, where they regulate PHB and FIL expression and overlap in function with AS1 and AS2. Interestingly, during this study, we found that KANADI1 (KAN1) and KAN2 act to promote adaxial organ identity in addition to their well-known role in promoting abaxial organ identity. Our data indicate that BOP1 and BOP2 act in cells adjacent to the lateral organ boundary to repress genes that confer meristem cell fate and induce genes that promote lateral organ fate and polarity, thereby restricting the developmental potential of the organ-forming cells and facilitating their differentiation.  相似文献   

15.
Ovule morphogenesis in Ranunculaceae and its systematic significance   总被引:2,自引:0,他引:2  
Wang ZF  Ren Y 《Annals of botany》2008,101(3):447-462
BACKGROUND AND AIMS: Ranunculaceae has a prominent phylogenetic position in Ranunculales which appears at the base of eudicots. The aims of the present paper are to reveal the features of ovule morphogenesis in different taxa and gain a better understanding of the systematics of Ranunculaceae. METHODS: Flowers of 17 species from three subfamilies, nine tribes and 16 genera of Ranunculaceae, at successive developmental stages, were collected in the wild and studied with a scanning electron microscope. KEY RESULTS: The integuments in the unitegmic ovules in Helleborus, Ranunculus and Oxygraphis, as well as the inner integuments in the bitegmic genera, initiate annularly and eventually become cup-shaped. However, the integuments in the unitegmic ovules in Anemone and Clematis, as well as the outer integuments in the bitegmic genera, arise semi-annularly and eventually become hood-shaped. Different kinds of appendages appear on the ovules during development. In Coptis of subfamily Coptidoideae, a wrap-shaped appendage arises outside the ovule and envelopes the ovule entirely. In the genera of subfamily Thalictroideae and tribe Anemoneae of subfamily Ranunculoideae, appendages appear on the placenta, the funicle or both. In tribe Helleboreae of subfamily Ranunculoideae, an alary appendage is initiated where the integument and the funicle join and becomes hood-shaped. CONCLUSIONS: Ovule morphogenesis characteristics are significant in classification at the levels of subfamilies and tribes. The initiation patterns of the integuments and the development of appendages show diversity in Ranunculaceae. The present observations suggest that the bitegmic, hood-shaped outer integument and endostomic micropyle are primitive while the unitegmic, cupular-shaped outer integument and bistomic micropyle are derivative.  相似文献   

16.
Transcriptional regulation in wood formation   总被引:1,自引:0,他引:1  
  相似文献   

17.
Ovules are specialized reproductive organs that develop within the carpels of higher plants. In Arabidopsis, mutations in two genes, BELL1 (BEL1) and APETALA2 (AP2), disrupt ovule development. In Bel1 ovules, the inner integument fails to form, the outer integument develops abnormally, and the embryo sac arrests at a late stage of megagametogenesis. During later stages of ovule development, cells of the outer integument of a Bel1 ovule sometimes develop into a carpel-like structure with stigmatic papillae and second-order ovules. The frequency of carpel-like structures was highest when plants were grown under conditions that normally induced flowering and was correlated with ectopic expression in the ovule of AGAMOUS (AG), an organ-identity gene required for carpel formation. Together, these results suggested that BEL1 negatively regulates AG late in ovule development. Likewise, mutants homozygous for the strong AP2 allele ap2-6 sometimes displayed structures with carpel-like features in place of ovules. However, such abnormal Ap2 ovules are much less ovulelike in morphology and form earlier than the Bel1 carpel-like structures. Because one role of the AP2 gene is to negatively regulate AG expression early in flower development, it is possible that AP2 works in a similar manner in the ovule. A novel ovule phenotype observed in Bel1/Ap2-6 double mutants suggested that BEL1 and AP2 genes function independently during ovule development.  相似文献   

18.
The earliest indication of ovule abortion in almond (Prunus dulcis [Mill.] D. A. Webb ‘Nonpareil‘) is the deposition of callose (as indicated by aniline blue fluorescence) 2 days after pollination which is 2 days before clear histological symptoms of ovule degeneration are evident and 6 days before fertilization of the viable ovule. Callose deposition begins in the chalazal region of the nucellus where the funicular trace enters the ovule and ramifies into the integuments. As ovule abortion progresses, callose deposition in the inner integument extends as a ring around the nucellus. Movement of the fluorescent dye disodium fluorescein (uranin) indicated that translocation from the vascular trace into abortive ovules becomes blocked at the chalazal position. The dye freely penetrates and diffuses into viable ovules but fails to penetrate abortive ovules. Lack of, or delayed and irregular, megagametophyte development was another characteristic of abortive ovules. Biochemical and histochemical analyses of abortive and viable ovules indicated that carbohydrate depletion parallels ovule abortion. These observations lead to the conclusion that ovule abortion is accompanied by blockage in metabolite supply although whether this blockage is the primary cause or a consequence of ovule abortion is uncertain.  相似文献   

19.
Morphological transitions associated with ovule diversification provide unique opportunities for studies of developmental evolution. Here, we investigate the underlying mechanisms of one such transition, reduction in integument number, which has occurred several times among diverse angiosperms. In particular, reduction in integument number occurred early in the history of the asterids, a large clade comprising approximately one-third of all flowering plants. Unlike the vast majority of other eudicots, nearly all asterids have a single integument, with the only exceptions in the Ericales, a sister group to the other asterids. Impatiens, a genus of the Ericales, includes species with one integument, two integuments, or an apparently intermediate bifid integument. A comparison of the development of representative Impatiens species and analysis of the expression patterns of putative orthologs of the Arabidopsis thaliana ovule development gene INNER NO OUTER (INO) has enabled us to propose a mechanism responsible for morphological transitions between integument types in this group. We attribute transitions between each of the three integument morphologies to congenital fusion via a combination of variation in the location of subdermal growth beneath primordia and the merging of primordia. Evidence of multiple transitions in integument morphology among Impatiens species suggests that control of underlying developmental programs is relatively plastic and that changes in a small number of genes may have been responsible for the transitions. Our expression data also indicate that the role of INO in the outgrowth and abaxial-adaxial polarity of the outer integument has been conserved between two divergent angiosperms, the rosid Arabidopsis and the asterid Impatiens.  相似文献   

20.
Arabidopsis superman (sup, also referred to as floral mutant10) mutants have previously been shown to have flowers with supernumerary stamens and reduced carpels as a result of ectopic expression of the floral homeotic gene APETALA3 (AP3). Here, we report that sup mutations also cause specific alterations in ovule development. Growth of the outer integument of wild-type ovules occurs almost exclusively on the abaxial side of the ovule, resulting in a bilaterally symmetrical hoodlike structure. In contrast, the outer integument of sup mutant ovules grows equally on all sides of the ovule, resulting in a nearly radially symmetrical tubular shape. Thus, one role of SUP is to suppress growth of the outer integument on the adaxial side of the ovule. Genetic analyses showed that the effects of sup mutations on ovule development are independent of the presence or absence of AP3 activity. Thus, SUP acts through different mechanisms in its early role in ensuring proper determination of carpel identity and in its later role in asymmetric suppression of outer integument growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号