首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the effect of free, non-transferrin-bound iron occurring in haematological stem cell transplant patients on growth of Staphylococcus epidermidis in serum in vitro, and prevention of bacterial growth by exogenous apotransferrin. S. epidermidis did not grow in normal serum at inoculated bacterial densities up to 10(3) cfu ml(-1) but slow growth could be detected at higher initial inocula. Addition of free iron abolished the growth-inhibitory effect of serum, whereas addition of apotransferrin again restored it. Appearance of free iron and loss of growth inhibition coincided in patient serum samples taken daily during myeloablative therapy. Intravenously administered apotransferrin effectively bound free iron and restored the growth inhibition in patient sera. The results suggest that exogenous apotransferrin might protect stem cell transplant patients against infections by S. epidermidis and possibly other opportunistic pathogens.  相似文献   

2.
Abstract The effect of synthetic iron chelators of the 1-alkyl-3-hydroxy-2-methylpyrid-4-one class (the L1 series) and 1-hydroxypyrid-2-one (L4) on bacterial growth in human serum was compared with those of the plant iron chelators mimosine and maltol and of the microbial siderophore desferrioxamine. None of the synthetic chelators enhanced growth of 3 Gram-negative organisms ( Yersinia enterocolitica, Escherichia coli and Pseudomonas aeruginosa ); in some cases they were even inhibitory. L4 strongly stimulated growth of Staphylococcus epidermidis , but the L1 series had only a marginal effect. Maltol was mildly inhibitory to all 4 bacterial species, while mimosine enhanced the growth of S. epidermidis and Y. enterocolitica but had little effect on E. coli or P. aeruginosa . Desferrioxamine enhanced the growth chelators of synthetic or plant origin may carry less risk of increasing susceptibility to bacterial infection in patients undergiong chelation therapy for iron overload than does desferrioxamine, the drug currently in clinical use.  相似文献   

3.
The effect of synthetic iron chelators of the 1-alkyl-3-hydroxy-2-methylpyrid-4-one class (the L1 series) and 1-hydroxypyrid-2-one (L4) on bacterial growth in human serum was compared with those of the plant iron chelators mimosine and maltol and of the microbial siderophore desferrioxamine. None of the synthetic chelators enhanced growth of 3 Gram-negative organisms (Yersinia enterocolitica, Escherichia coli and Pseudomonas aeruginosa); in some cases they were even inhibitory. L4 strongly stimulated growth of Staphylococcus epidermidis, but the L1 series had only a marginal effect. Maltol was mildly inhibitory to all 4 bacterial species, while mimosine enhanced the growth of S. epidermidis and Y. enterocolitica but had little effect on E. coli or P. aeruginosa. Desferrioxamine enhanced the growth of all except E. coli. These results suggest that the chelators of synthetic or plant origin may carry less risk of increasing susceptibility to bacterial infection in patients undergoing chelation therapy for iron overload than does desferrioxamine, the drug currently in clinical use.  相似文献   

4.
Minn  Yuriko  Brummer  Elmer  Stevens  David A. 《Mycopathologia》1997,138(1):29-35
Human serum, transferrin, and apotransferrin are known to profoundly inhibit the growth of Candida albicans by iron deprivation. On the other hand, iron overload (iron saturated transferrin) is a serious risk factor for candidiasis in newborn and in leukemic patients. We tested the efficacy of fluconazole and the previously demonstrated synergy of fluconazole and effector cells against C. albicans under iron overload conditions where efficacy might be diminished. We confirm that exogenous iron completely reversed the inhibitory effect of human serum and report that the efficacy of fluconazole against C. albicans was not significantly compromised in a 24 h assay system. Although exogenous iron inhibited fungistatic activity of monocyte-derived macrophages, it did not interfere with the synergistic candidacidal activity of fluconazole and monocyte-derived macrophages. In 72 h assays, where fluconazole had candidacidal activity, exogenous iron did not compromise efficacy of fluconazole, and fluconazole activity was often increased. These in vitro results suggest that effectiveness of fluconazole therapy would not be compromised in iron overload situations in vivo. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The reticuloendothelial system has a central role in erythropoiesis and iron homeostasis. An important function of reticuloendothelial macrophages is phagocytosis of senescent red blood cells. The iron liberated from heme is recycled for delivery to erythrocyte precursors for a new round of hemoglobin synthesis. The molecular mechanism by which recycled iron is released from macrophages remains unresolved. We have investigated the mechanism of macrophage iron efflux, focusing on the role of ceruloplasmin (Cp), a copper protein with a potent ferroxidase activity that converts Fe2+ to Fe3+ in the presence of molecular oxygen. As shown by others, Cp markedly increased iron binding to apotransferrin at acidic pH; however, the physiological significance of this finding is uncertain because little stimulation was observed at neutral pH. Introduction of a hypoxic atmosphere resulted in marked Cp-stimulated binding of iron to apotransferrin at physiological pH. The role of Cp in cellular iron release was examined in U937 monocytic cells induced to differentiate to the macrophage lineage. Cp added at its normal plasma concentration increased the rate of 55Fe release from U937 cells by about 250%. The stimulation was absolutely dependent on the presence of apotransferrin and hypoxia. Cp-stimulated iron release was confirmed in mouse peritoneal macrophages. Stimulation of iron release required an intracellular "labile iron pool" that was rapidly depleted in the presence of Cp and apotransferrin. Ferroxidase-mediated loading of iron into apotransferrin was critical for iron release because ferroxidase-deficient Cp was inactive and because holotransferrin could not substitute for apotransferrin. The extracellular iron concentration was critical as shown by inhibition of iron release by exogenous free iron, and marked enhancement of release by an iron chelator. Together these data show that Cp stimulates iron release from macrophages under hypoxic conditions by a ferroxidase-dependent mechanism, possibly involving generation of a negative iron gradient.  相似文献   

6.
F. J. Alcaín  H. Löw  F. L. Crane 《Protoplasma》1995,184(1-4):233-237
Summary Addition of the impermeable iron II chelator bathophenanthroline disulfonate (BPS) to cultured Chinese hamster lung fibroblast (CCL 39 cells) inhibits DNA synthesis but not protein synthesis or cytoplasmic alkalinization, when cell growth is initiated with growth factors such as EGF plus insulin, thrombin, or ceruloplasmin. The BPS inhibition is reversed by addition of stoichiometric ferrous iron at stoichiometric concentration. BPS does not inhibit cell growth stimulated by fetal calf serum. The effect of the BPS differs from the inhibition of growth by hydroxyurea which acts on the ribonucleotide reductase. The BPS treatment leads to release of iron from the cells as determined by BPS iron II complex formation over 90 min. Cells treated with BPS just during starvation period cannot re-initiate DNA synthesis after mitogen stimulation even if BPS is removed from the medium and cells are previously washed. BPS treatment also inhibits transplasma membrane electron which is restored by incubation of cells with 10 M ferric ammonium citrate. Growth factor stimulation of DNA synthesis is restored by addition of 1 M ferrous ammonium sulfate or ferric ammonium citrate, or 0.1 M diferric transferrin. Copper, cobalt, nickel, zinc, gallium, aluminum, or apotransferrin cannot restore the activity. The BPS effect is consistent with removal of iron from a site on the cell surface which controls electron transport and DNA synthesis.Abbreviations BCS bathocuproine disulfonate - BPS bathophenan-throline disulfonate - CUP ceruloplasmin - FCS fetal calf serum - Fe2Tf diferric transferrin - EGF epidermal growth factor - HU hydroxyurea - THR -thrombin  相似文献   

7.
The ability of Staphylococcus epidermidis strains to grow in the presence of human transferrin and varying amounts of ferric iron was studied. At initial bacterial densities up to 10(4) cfu ml(-1), none of the three strains grew when transferrin iron saturation was below the full saturation point, whereas the bacteria grew consistently when transferrin was fully iron-saturated and there was non-transferrin-bound iron in the medium. Precultivation of the bacteria under iron-restricted conditions to induce siderophore production did not abolish the growth dependence on non-transferrin-bound iron. At initial bacterial densities of 10(6) cfu ml(-1), the bacteria proliferated consistently also in the presence of partially saturated transferrin. The results indicate that at low bacterial densities, S. epidermidis cannot utilise transferrin-bound iron for growth and that its proliferation is dependent on non-transferrin-bound iron.  相似文献   

8.
Staphylococcus aureus produces many virulence factors, including toxins, immune-modulatory factors, and exoenzymes. Previous studies involving the analysis of virulence expression were mainly performed by in vitro experiments using bacterial medium. However, when S. aureus infects a host, the bacterial growth conditions are quite different from those in a medium, which may be related to the different expression of virulence factors in the host. In this study, we investigated the expression of virulence factors in S. aureus grown in calf serum. The expression of many virulence factors, including hemolysins, enterotoxins, proteases, and iron acquisition factors, was significantly increased compared with that in bacterial medium. In addition, the expression of RNA III, a global regulon for virulence expression, was significantly increased. This effect was partially restored by the addition of 300 μM FeCl3 into serum, suggesting that iron depletion is associated with the increased expression of virulence factors in serum. In chemically defined medium without iron, a similar effect was observed. In a mutant with agr inactivated grown in serum, the expression of RNA III, psm, and sec4 was not increased, while other factors were still induced in the mutant, suggesting that another regulatory factor(s) is involved. In addition, we found that serum albumin is a major factor for the capture of free iron to prevent the supply of iron to bacteria grown in serum. These results indicate that S. aureus expresses virulence factors in adaptation to the host environment.  相似文献   

9.
The ability of transferrin to potentiate oxygen free radical-mediated endothelial cell injury was assessed. 51Cr-labeled endothelial cells derived from rat pulmonary arteries (RPAECs) were incubated with hydrogen peroxide (H2O2) in the presence and absence of holosaturated human transferrin, and the effect of transferrin on H2O2-mediated endothelial cell toxicity was determined. Addition of holosaturated transferrin potentiated H2O2-mediated RPAEC cytotoxicity at concentrations of H2O2 greater than 10 microM, suggesting that transferrin may provide a source of iron for free radical-mediated endothelial cell injury. Free radical-mediated injury is dependent on non-protein-bound iron. The ability of RPAECs to facilitate the release of iron from transferrin was assessed. We determined that RPAECs facilitate the release of transferrin-derived iron by reduction of transferrin-bound ferric iron (Fe3+) to ferrous iron (Fe2+). The reduction and release of transferrin-derived Fe2+ were inhibited by apotransferrin and chloroquine, indicating a dependence on receptor-specific binding of transferrin to the RPAEC cell surface, with subsequent endocytosis, acidification, and reduction of transferrin-bound Fe3+ to Fe2+. The release of transferrin-derived Fe2+ was potentiated by diethyldithiocarbamate, an inhibitor of intracellular superoxide dismutase (SOD). In contrast, exogenous SOD did not alter iron release, suggesting that intracellular superoxide anion (O2-) may play an important role in mediating the reduction and release of transferrin-derived iron. Results of this study suggest that transferrin may provide a source of iron for oxygen free radical-mediated endothelial cell injury and identify a novel mechanism by which endothelial cells may mediate the reduction and release of transferrin-derived iron.  相似文献   

10.
Drugs commonly used in intensive care settings were assayed for their ability to affect the growth of Staphylococcus epidermidis in a minimal salts medium containing 30% serum. Of 28 compounds tested, the inotropic catecholamines adrenaline, dobutamine, dopamine, isoprenaline and noradrenaline significantly stimulated bacterial growth. These drugs, but not structurally similar compounds lacking a dihydroxybenzoyl moiety (such as tyramine, phenylephrine and salbutamol), were able to remove iron from iron-saturated transferrin and to supply transferrin-bound 55Fe to S. epidermidis cells. Similar results were observed with a range of coagulase-negative staphylococci associated with line infections, but not with Staphylococcus aureus (including MRSA).  相似文献   

11.
Summary Iron-free RITC 80-7 defined medium was used to examine effects of ferrous iron and transferrin on cell proliferation of human diploid fibroblasts. Both ferrous iron and holotransferrin stimulated cell proliferation in the medium, but apotransferrin did not. When 5 g/l human serum albumin (HSA) was added to the defined medium, excellent growth was obtained under hypoxic conditions, whereas a reduction of cellular growth during the culture periods was observed under aerobic conditions. When ferrous iron was added to the HSA medium alone, the reduction in growth increased in proportion to the concentrations, whereas the addition of transferrin prevented this reduction in a concentration-dependent manner. This suggests that the ferrous iron concentration in media causes a reduction in growth under aerobic conditions and transferrin prevents this reduction because it decreases the ferrous iron concentration. Further, serum albumin seems to be a source of iron in media.  相似文献   

12.
Anticryptococcal activity of human serum and apotransferrin in RPMI 1640 was studied in vitro. The effects of varying concentrations of FeCl3 on this activity was investigated. Possible synergy of serum and apotransferrin with fluconazole was also measured. The fungistatic activity of human serum, whether lyophilized, stored at 4 °C, fresh frozen or purchased from commercial sources vs. Cryptococcus neoformans was comparable. There was no significant loss of fungistatic activity after freezing and thawing the serum up to 10 times. The fungistatic activity of human serum was similar when tested in different tissue culture media with the exception of Medium 199. The addition of apotransferrin (2.0 or 0.2 mg/ml) to RPMI 1640 had an inhibitory effect on cryptococcal growth. This effect was reversed by 20 M of FeCl3 at both apotransferrin concentrations. By contrast, addition of FeCl3 to human serum and RPMI 1640 did not reverse inhibition of growth. Fluconazole synergized with the human serum preparations described, but not with pooled commercial serum, for fungicidal activity. Synergistic activity of fluconazole and human serum was not affected by the addition of FeCl3. Apotransferrin did not show any synergistic fungicidal activity with fluconazole.  相似文献   

13.
Of the different growth supplements used in chemically defined media, only transferrin is required for differentiation of tubules in the embryonic mouse metanephros. Since transferrin is an iron-carrying protein, we asked whether iron is crucial for tubulogenesis. Differentiation of metanephric tubules both in whole embryonic kidneys and in a transfilter system was studied. The tissues were grown in chemically defined media containing transferrin, apotransferrin, the metal-chelator complex ferric pyridoxal isonicotinoyl hydrazone (FePIH), and excesses of ferric ion. Although we found that apotransferrin was not as effective as iron-loaded transferrin in promoting proliferation in the differentiating kidneys, excess ferric ion at up to 100 microM, five times the normal serum concentration, could not promote differentiation or proliferation. However, iron coupled to the nonphysiological, lipophilic iron chelator, pyridoxal isonicotinoyl hydrazone, to form FePIH, could sustain levels of cell proliferation and tubulogenesis similar to those attained by transferrin. Thus, the role of transferrin in cell proliferation during tubulogenesis is solely to provide iron. Since FePIH apparently bypasses the receptor-mediated route of iron intake, the use of FePIH as a tool for investigating cell proliferation and its regulation is suggested.  相似文献   

14.
In this study, we attempted to determine the effects of iron-availability and the activity of the bacterial iron-uptake system (IUS) on the growth of Staphylococcus aureus in human peritoneal dialysate (HPD) solution. A streptonigrin-resistant S. aureus (SRSA) strain, isolated from S. aureus ATCC 6538, exhibited defective siderophore production, thereby resulting in ineffective uptake of iron from low iron-saturated transferrin. The growth of both strains was stimulated in HPD solution supplemented with FeCl3 and holotransferrin, but growth was inhibited in HPD solution which had been supplemented with apotransferrin and dipyridyl. The SRSA strain grew less robustly than did its parental strain in both iron-supplemented HPD solution and regular HPD solution. These results indicate that iron-availability and siderophore-mediated IUS activity in particular, the ability to produce siderophores and thus capture iron from low iron-saturated transferrin play critical roles in the growth of S. aureus in HPD solution. Our results also indicated that the possibility of using iron chelators as therapeutic or preventive agents warrants further evaluation.  相似文献   

15.
16.
The relation of the growth-stimulating capacity of transferrin to its iron-transporting function was investigated in mouse hybridoma PLV-01 cells cultivated in a chemically defined medium. The cells were precultivated in protein-free medium supplemented either with ferric citrate (cells with a high intracellular iron level) or with iron-saturated transferrin (cells with a low intracellular iron level). Iron uptake was monitored after the application of 59Fe-labeled ferric citrate or pig transferrin. Cultivation of the cells at the optimum growth-stimulating concentration (500 microM) of ferric citrate resulted in an intracellular iron level about 100-fold higher than that of cells cultivated at the optimum transferrin concentration (5 micrograms/ml). Replacement of pig transferrin with bovine transferrin resulted in similar intracellular iron levels, but the growth-stimulating effect of bovine transferrin was more than one order of magnitude lower. Cells with a high intracellular iron level grew equally well when cultivated with iron-saturated transferrin or with apotransferrin + deferoxamine (2 micrograms/ml). On the other hand, cells with a low intracellular iron level required iron-saturated transferrin for further growth and apotransferrin + deferoxamine was ineffective. The results suggest that transferrin can act as a cell growth factor only in the iron-saturated form. However, several findings of this work indicate that supplying cells with iron cannot be accepted as the full explanation of the transferrin growth-stimulating effect.  相似文献   

17.
Rat liver ferritin is an effective donor of iron to rat hepatocytes. Uptake of iron from ferritin by the cells is partially inhibited by including apotransferrin in the culture medium, but not by inclusion of diferric transferrin. This inhibition is dependent on the concentration of apotransferrin, with a 30% depression in iron incorporation in the cells detected at apotransferrin concentrations above 40 micrograms/ml. However, apotransferrin does not interfere with uptake of 125I-labeled ferritin, suggesting that apotransferrin decreases retention of iron taken up from ferritin by hepatocytes by sequestering a portion of released iron before it has entered the metabolic pathway of the cells. The iron chelators desferrioxamine (100 microM), citrate (10 mM) and diethylenetriaminepentaacetate (100 microM) reduce iron uptake by the cells by 35, 25 and 8%, respectively. In contrast, 1 mM ascorbate increases iron accumulation by 20%. At a subtoxic concentration of 100 microM, chloroquine depresses ferritin and iron uptake by hepatocytes by more than 50% after 3 h incubation. Chloroquine presumably acts by retarding lysosomal degradation of ferritin and recycling of ferritin receptors.  相似文献   

18.
Pyrrolidine dithiocarbamate (PDTC), a metal chelating compound, is known to induce cell death in vascular smooth muscle cells (VSMC). However, the molecular mechanism for PDTC-induced VSMC death is not well understood. Addition of PDTC reduced cell growth and DNA synthesis on VSMC in low density conditions. However, in serum depleted medium, PDTC did not affect the cell viability, suggesting that certain factors in serum may mediate the cytotoxic effect of PDTC. Several metal chelators prevented the cell death induced by PDTC. In a serum-deprived condition, addition of exogenous metals, copper, iron, and zinc, restored the cytotoxic effect of PDTC. These data indicate that metals such as copper, iron, and zinc in serum may mediate the cytotoxic effect of PDTC. At low VSMC density in 10% FBS, treatment of PDTC, which induced a cell-cycle block in G1-phase, induced down-regulation of cyclins and CDKs and up-regulation of the CDK inhibitor p21 expression, whereas up-regulation of p27 or p53 by PDTC was not observed. Finally, we determined PDTC-mediated signaling pathway involved in VSMC death. Among relevant pathways, PDTC induced marked activation of p38MAPK and JNK. Expression of dominant negative p38MAPK and SB203580, a p38MAPK specific inhibitor, blocked PDTC-dependent p38MAPK, growth inhibition, and p21 expression. These data demonstrate that the p38MAPK pathway participates in p21 induction, which consequently leads to decrease of cyclin D1/cdk4 and cyclin E/cdk2 complexes and PDTC-dependent VSMC growth inhibition. In conclusion, an understanding of the molecular mechanisms of PDTC in VSMC provides a theoretical basis for clinical approaches using antioxidant therapies in atherosclerosis.  相似文献   

19.
Primary cultures of the medroxyprogesterone acetate-induced mouse mammary tumor line C4-HD are stimulated by medroxyprogesterone acetate (MPA) or progesterone. Serum obtained from ovariectomized, MPA-treated animals (OVX-MPA) exerts a stimulatory effect that is significantly higher than that induced by serum obtained from OVX mice with the exogenous addition of MPA, suggesting the involvement of MPA-induced serum factors potentiating the proliferative effect of MPA. The object of this paper is to further explore the stimulatory effect of mouse serum and to investigate the role of aFGF and bFGF on cell proliferation. The role of PR as possible mediators was tested using two different antiprogestins and antisense oligodeoxynucleotides of PR A isoform. Serum was obtained from OVX untreated or MPA-treated mice and was charcoalized and/or heat-inactivated. The effect of MPA or mifepristone at 10 nM concentrations was tested. Charcoalization and heat inactivation exerted a stimulatory effect (P<0.01) when OVX-serum was used. This effect was potentiated by MPA. Charcoalized OVX-MPA serum induced a significant inhibition of cell proliferation that was restored by the exogenous addition of MPA or by heat inactivation. Mifepristone induced an inhibition of 3H-thymidine uptake when OVX-MPA serum was used. These results suggest that serum factors activated by different manipulations may replace the stimulatory effect of MPA. When charcoalized fetal calf serum (chFCS) was used, a higher proliferative activity was obtained using higher serum concentrations. Mifepristone and onapristone 10 nM also inhibited this effect. aFGF and bFGF 100 ng/ml were both able to stimulate 3H-thymidine uptake. MPA exerted an additive effect. Mifepristone 10 nM inhibited bFGF and MPA+bFGF induced cell proliferation. Antisense oligodeoxynucleotides of PR (ASPR) were used to further confirm the participation of PR in the proliferative pathway of these cells. They inhibited serum and bFGF-induced cell proliferation in a specific dose-dependent manner. Our results suggest that PR play a central role in proliferation and suggest the existence of a cross-talk between steroid and growth factor signaling pathways.  相似文献   

20.
ABSTRACT: BACKGROUND: The Siamese crocodile (Crocodylus siamensis) is a critically endangered species of freshwater crocodiles. Crocodilians live with opportunistic bacterial infection but normally suffer no adverse effects. They are not totally immune to microbial infection, but their resistance thereto is remarkably effective. In this study, crude and purified plasma extracted from the Siamese crocodile were examined for antibacterial activity against clinically isolated, human pathogenic bacterial strains and the related reference strains. METHODS: Crude plasma was prepared from whole blood of the Siamese crocodile by differential sedimentation. The crude plasma was examined for antibacterial activity by the liquid growth inhibition assay. The scanning electron microscopy was performed to confirm the effect of crude crocodile plasma on the cells of Salmonella typhi ATCC 11778. Effect of crude crocodile plasma on cell viability was tested by MTT assay. In addition, the plasma was purified by anion exchange column chromatography with DEAE-Toyopearl 650M and the purified plasma was tested for antibacterial activity. RESULTS: Crude plasma was prepared from whole blood of the Siamese crocodile and exhibited substantial antibacterial activities of more than 40% growth inhibition against the six reference strains of Staphylococcus aureus, Salmonella typhi, Escherichia coli, Vibrio cholerae, Pseudomonas aeruginosa, and Staphylococcus epidermidis, and the four clinical isolates of Staphylococcus epidermidis, Pseudomonas aeruginosa, Salmonella typhi, and Vibrio cholerae. Especially, more than 80% growth inhibition was found in the reference strains of Salmonella typhi, Vibrio cholerae, and Staphylococcus epidermidis and in the clinical isolates of Salmonella typhi and Vibrio cholerae. The effect of the crude plasma on bacterial cells of Salmonella typhi, a certain antibacterial material probably penetrates progressively into the cytoplasmic space, perturbing and damaging bacterial membranes. The effect of the crude plasma was not toxic by the yellow tetrazolium bromide (MTT) assay using a macrophage-like cell, RAW 264.7. The pooled four fractions, designated as fractions D1-D4, were obtained by column chromatography, and only fraction D1 showed growth inhibition in the reference strains and the clinical, human pathogenic isolates. CONCLUSIONS: The crude and purified plasma from the Siamese crocodile significantly showed antibacterial activity against pathogenic bacteria and reference strains by damage cell membrane of target bacterial cells. From the MTT assay, the Siamese crocodile plasma was not cytotoxic to the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号