首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Viability of frozen-thawed mouse embryos is affected by genotype   总被引:3,自引:0,他引:3  
Embryos from mice of five different genotypes were evaluated for their ability to survive cryopreservation as measured by post-thaw in vitro development. In Study 1, ovulation was induced with a standardized pregnant mares' serum gonadotropin (PMSG)/human chorionic gonadotropin (hCG) regimen, after which females were mated with males of the same genotype to produce incrossed embryos. Four- to 8-cell embryos were frozen in 1.5 M dimethyl sulfoxide (DMSO) at a rate of 0.5 degrees C/min to -80 degrees C and stored in liquid nitrogen. Following thawing at room temperature, embryos were cultured and development was evaluated 24 h later. The mean (+/- SEM) number of 4- to 8-cell embryos/pregnant female by stock/strain were: N:NIH(S), 6.8 +/- 0.8; N:NIH(S)-B, 5.8 +/- 0.5; N:GP(S), 6.5 +/- 0.6; C57BL/6N, 9.7 +/- 1.0; C3H/HeN MTV-, 9.5 +/- 0.9 (P less than 0.05). Post-thaw in vitro development was related to genetic background; the proportion of embryos culturing after thawing was: N:NIH(S), 49%; N:NIH(S)-B, 61%; N:GP(S), 66%; C57BL/6N, 75%; C3H/HeN MTV-, 56% (P less than 0.05). Study 2 was conducted to evaluate the influence of mating various females to males of a genotype known to have a lower post-thaw embryo survival rate. N:NIH(S)-B, N:GP(S), C57BL/6N, and C3H/HeN MTV- female mice were mated with N:NIH(S) males to produce hybrid embryos. Post-thaw embryo survival was reduced (P less than 0.05) in three of the four hybrid groups. Fresh incrossed and hybrid embryos from each study were cultured for 24 h and yielded culture rates ranging from 95% to 99% (P greater than 0.05) among all groups.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
3.
4.
The development of XO gynogenetic mouse embryos   总被引:1,自引:0,他引:1  
Diploid gynogenetic embryos, which have two sets of maternal and no paternal chromosomes, die at or soon after implantation. Since normal female embryos preferentially inactivate the paternally derived X chromosome in certain extraembryonic membranes, the inviability of diploid gynogenetic embryos might be due to difficulties in achieving an equivalent inactivation of one of their two maternally derived X chromosomes. In order to investigate this possibility, we constructed XO gynogenetic embryos by nuclear transplantation at the 1-cell stage. These XO gynogenones showed the same mortality around the time of implantation as did their XX gynogenetic counterparts. This shows that the lack of a paternally derived autosome set is sufficient to cause gynogenetic inviability at this stage. Autosomal imprinting and its possible relation to X-chromosome imprinting is discussed.  相似文献   

5.
6.
K Nakamura  Y Tsunoda 《Cryobiology》1992,29(4):493-499
This study compares the resistance of the nuclei and the cytoplasm of two-cell mouse embryos to short-term storage at low temperature above 0 degrees C. Two-cell embryos were stored at 4 degrees C for 24-96 h in PB1 containing 0.25, 0.5, 0.75, and 1.0 M sucrose. The development to blastocysts in culture was highest in the presence of 0.5 M sucrose. However, only 3% of the embryos developed into blastocysts after 96 h of storage. On the other hand, the viability of the nuclei of two-cell embryos stored at 4 degrees C was significantly prolonged when they were transplanted into a blastomere of enucleated fresh F1 (C57BL/6JXCBA) two-cell embryos. The proportions of chimeric embryos that developed to blastocysts were 88, 67, 76, 71, 64, 45, 32, and 20% following storage for 0, 48, 72, 96, 120, 144, 168, and 192 h, respectively. In addition, there was no difference in the coat color of the young derived from nuclei stored at 4 degrees C or fresh nuclei, although the proportions of chimeric embryos that developed into live young after transfer tended to decrease with increased storage time. Moreover, the viability of nuclei stored at 4 degrees C for 192 h was confirmed in the germ cell population of chimeric mice mated with albino mice. These results demonstrated that the nuclei in the two-cell mouse embryos were more resistant to storage at low temperature than the cytoplasm.  相似文献   

7.
In this study, we sought to determine the extent to which mitogenic growth factors affect the survival and development of cloned mouse embryos in vitro. Cloned embryos derived by intracytoplasmic nuclear injection (ICNI) of cumulus cell nuclei into enucleated oocytes were incubated in culture media supplemented with EGF and/or TGF-alpha for 4 days. Compared to control, treatment with either growth factor significantly increased the blastocyst formation rate, the total number of cells per blastocyst, the cell ratio of the inner cell mass and the trophectoderm (ICM:TE ratio), and EGF-R protein expression in cloned embryos. In most instances these effects were enhanced in cloned embryos when EGF and TGF-alpha were combined. Although fewer blastocysts developed from cloned than from fertilized one-cell stage embryos, growth factor treatment appeared to have the greatest effect on cloned embryos. These results demonstrate that mitogenic growth factors significantly enhance survival and promote the preimplantation development of cloned mouse embryos.  相似文献   

8.
Developmental aspects of the neuromuscular system in mouse embryos chronically paralyzed in utero with tetrodotoxin (TTX) between embryonic days 14 and 18 were studied using biochemical and histological methods. The number of lumbar spinal motoneurons (MNs) was higher in inactive embryos than in controls suggesting a decreased motoneuron cell death. In association with the increase in MN number, choline acetyltransferase activity was significantly increased in both spinal cord and peripheral synaptic sites. Paralyzed muscles exhibited a decreased number of mature myofibers and the nuclei were centrally located. Creatine kinase activity was greatly decreased and total acetylcholine receptor and receptor cluster numbers per myofiber were significantly increased in paralyzed muscles. A similar pattern of changes occurs in the neuromuscular system of the mutant mouse muscular dysgenesis (mdg). However, in contrast to the mdg mutant, tetrodotoxin-treated muscles were similar to controls in their innervation pattern, in the ultrastructural aspects of the excitation–contraction coupling system (i.e., dyads and triads) and in the extent of dihydropyridine binding. Thus, neuromuscular inactivity is not sufficient to impair the pattern of muscle innervation or the appearance of either the triadic junctions or dihydropyridine receptors. These results indicate that alterations of dihydropyridine binding sites and triads in muscular dysgenesis cannot be accounted for by inactivity but rather must reflect a more primary defect involving the structural gene(s) regulating the development of one or more aspects of muscle differentiation.  相似文献   

9.
Purines inhibit the development of mouse embryos in vitro   总被引:2,自引:0,他引:2  
The first cleavage of embryos derived from random-bred, inbred, and hybrid-inbred female mice was not arrested by purines at concentrations as high as 30 microM. Development after the first or second cleavage was arrested by hypoxanthine, adenosine or inosine, but not guanosine. In agreement with previous results, the purine-induced block was reversed when arrested embryos were transferred to purine-free media after 24 h in culture. The cleavage arrest was not due to elevations of cAMP as a result of inhibition of phosphodiesterase activity since similar concentrations of phosphodiesterase inhibitors or dibutyryl cAMP did not block development. Treatment with inhibitors of enzymes that convert IMP to AMP or to GMP did not reverse the hypoxanthine-induced block, thus demonstrating that mitotic arrest is mediated by a mechanism different from the hypoxanthine arrest of meiosis. Thymidine incorporation studies showed that the block did not prevent the onset of DNA synthesis. The results reveal a profound sensitivity to purine inhibition of a cell process that occurs during the first 30 h of mouse embryo development and is necessary for progession through the G2 or M phases of the second or third cleavage.  相似文献   

10.
More than any other species, humans have difficulty reproducing. As recent studies show that human infertility is ever increasing, much efforts are needed towards the understanding of our low fecundity. While aneuploidy is the leading cause of spontaneous pregnancy loss in humans, we still know surprisingly little about the developmental consequences of chromosomal abnormalities. We have here used a mouse model that spontaneously incites chromosomal primary aneuploidy in female haploid oocytes and find that after fertilization, these primary aneuploid cells become cytological unstable, generating diverse karyotypic mosaic embryos. The mosaic aneuploid embryos can develop and implant into the female uterine tissue and initiate the gastrulation process (E6.5) but quickly degrade and succumb by E8.0. We find that loss of embryo viability due to chromosomal mosaicism is caused by the activation of a spatially and temporally controlled p53-independent apoptotic mechanism and does not result from a failure to progress through mitosis. We conclude that an initial state of primary aneuploidy within an embryo results in a rapid evolution of mosaicism and early embryonic death. This gestational loss due to aneuploid mosaicism could account for the large proportion of human pregnancy loss prior to clinical recognition.  相似文献   

11.
12.
Despite the fact that a variety of experimental techniques have been devised over the years to induce tetraploid mammalian embryonic development, success rates to date have been limited. Apart from the early study by Snow, who obtained development to term of a limited number of cytochalasin B-induced tetraploid mouse embryos, no other researchers have achieved development of tetraploid embryos beyond the early postimplantation period. We now report advanced postimplantation development of tetraploid mouse embryos following electrofusion of blastomeres at the 2-cell stage, and subsequent transfer of these 1-cell 'fused' embryos to appropriate recipients. Cytogenetic analysis of the extraembryonic membranes of all of the postimplantation embryos encountered in the present study has provided an unequivocal means of confirming their tetraploid chromosome constitution. A preliminary morphological and histological analysis of the tetraploid embryos obtained by this technique has revealed that characteristic craniofacial abnormalities particularly involving the forebrain and eyes were consistently observed, and these features were often associated with abnormalities of the vertebral axis and heart. The most advanced viable embryo in this series was recovered on the 15th day of gestation, and its morphological features suggest that it was developmentally equivalent to a normal embryo of about 13.5-14 days p.c.  相似文献   

13.
The purpose of this study was to observe the effects of irradiation on the craniofacial development of NMRI mouse embryos. Two populations of pregnant mice were irradiated with a single dose of 2 Gray on day 8 of gestation for the first population (Po. 1) and on day 9 of gestation for the second population (Po. 2). On gestational days 9 to 17, embryos were submitted to histological and scanning electron microscope examinations. The two populations of embryos presented a high percentage of centro-facial hypoplasia (74.7% for Po. 1 and 75% for Po. 2) which was more pronounced in the latter one. Ocular anomalies were present in 16% of the first population. Cases of anencephaly, cleft palate and anomalies of the central nervous system were found in both populations.  相似文献   

14.
Copper-deficient rat embryos are characterized by brain and heart anomalies, low superoxide dismutase activity, and high superoxide anion concentrations. One consequence of increased superoxide anions can be the formation of peroxynitrite, a strong biological oxidant. To investigate developmentally important features of copper deficiency, GD 8.5 mouse embryos from copper-adequate and copper-deficient dams were cultured in media that were adequate or deficient in copper. After 48 h, copper-deficient embryos exhibited brain and heart anomalies, and a high incidence of yolk sac vasculature abnormalities compared to controls. Immunohistochemistry of 4-hydroxynonenal and 8-hydroxy-2'-deoxyguanosine for lipid and DNA damage, respectively, was similar between groups. In contrast, 3-nitrotyrosine, taken as a measure of protein nitration, was markedly higher in the neuroepithelium of the anterior neural tube of copper-deficient embryos than in controls. Repletion of copper-deficient media with copper, or supplementation with copper-zinc superoxide dismutase, Tiron, or glutathione peroxidase did not ameliorate the abnormal development, but did decrease 3-nitrotyrosine in neuroepithelium of copper-deficient embryos. These data support the concept that while copper deficiency compromises oxidant defense and increases protein nitration, additional mechanisms, e.g., altered nitric oxide metabolism may contribute to copper-deficiency-induced teratogenesis.  相似文献   

15.
16.
Early development and X-chromosome inactivation were studied in ethanol-induced mouse parthenogenones. About 24% of oocytes transferred to 0.5-day pseudopregnant recipients successfully implanted. However, only 49%, 20%, and 16% of implanted parthenogenones survived 5, 6, and 7 days later, respectively. Abnormal development was evident in every parthenogenone as early as 5 days after activation with the degenerating polar trophectoderm. These embryos were destined to become either small disorganized embryos or embryonic ectoderm vesicles bounded by the visceral endoderm. Only 2 of 51 representative 6- to 8-day parthenogenones sectioned had morphology of the normal egg cylinder, although growth retardation was evident. Spontaneous LT/Sv parthenogenones shared similar morphological features. In late blastocysts, the frequency of cells with an apparently inactivated X chromosome was lower in parthenogenones than in fertilized embryos. The failure of X-inactivation in the trophectoderm seems to contribute to the defective development of parthenogenones.  相似文献   

17.
The emergence of the circadian rhythm is a dramatic and physiologically essential event for mammals to adapt to daily environmental cycles. It has been demonstrated that circadian rhythms develop during the embryonic stage even when the maternal central pacemaker suprachiasmatic nucleus has been disrupted. However, the mechanisms controlling development of the circadian clock are not yet fully understood. Here, we show that the circadian molecular oscillation in primary dispersed embryonic cells and explanted salivary glands obtained from mPER2Luc mice embryos developed cell- or tissue-autonomously even in tissue culture conditions. Moreover, the circadian clock in the primary mPER2Luc fibroblasts could be reprogrammed by the expression of the reprogramming factors. These findings suggest that mammalian circadian clock development may interact with cellular differentiation mechanisms.  相似文献   

18.
Diandric heterozygous diploid mouse embryos were produced by standard micromanipulatory techniques using eggs from female mice with a normal chromosome constitution and fertilised by homozygous Rb(1.3)1Bnr males containing a pair of large metacentric marker chromosomes in their karyotype. The constructed diandric eggs were transferred to the oviducts of pseudopregnant recipients and subsequently autopsied midday on the eighth day of gestation. From a total of 85 eggs transferred to females that subsequently became pregnant, 30 implanted. Eighteen implantation sites were found to contain resorptions, and 12 egg cylinder stage embryos were recovered. These were cytogenetically examined. In two cases, no mitoses were observed, and in a third embryo of normal size, only a single paternally-derived marker chromosome was present in its mitoses, indicating that this embryo had a normal chromosome constitution. This presumably resulted from a technical error during the micromanipulatory procedure. The remaining nine morphologically small but normal embryos were diploid, and each had two paternally-derived marker chromosomes, thus establishing their ploidy and confirming their diandric origin. G-banding analysis revealed that all of these embryos had an XY sex chromosome constitution. Since the expected XX:XY:YY ratio of 1:2:1 was not observed, it is clear that the XX class embryos were lost at some stage during the pre- or early post-implantation period, though whether they are represented by the resorption sites is not yet established. The YY class would not be expected to be recovered in any case, as these embryos are believed to be lost during early cleavage. The cytogenetic findings reported here are therefore similar to the results of the chromosomal analyses of the human complete hydatidiform moles of dispermic origin, all of which apparently have an XY karyotype. It is unclear why, both in the human and in the mouse, the XX diandric heterozygous diploid group should develop poorly compared to similar embryos with an XY karyotype.  相似文献   

19.
20.
Herr CM  Wright RW 《Theriogenology》1988,29(3):765-770
Experiments were designed to evaluate the survival rates of preimplantation mouse embryos of different stages of development in cold culture at 4 degrees C. Several developmental stages, from one-cell to the blastocyst, were stored at 4 degrees C from 1 to 8 d. Viability following cold culture was determined by blastocyst expansion during culture in Whitten's medium at 37 degrees C. Blastocyst formation of nonstored controls ranged from 93 to 100% for all developmental stages tested. Only 3% of one-cell embryos survived 1 d and none survived 2 days at 4 degrees C. Survival improved using two-cell embryos, with 84, 69 and 15% forming expanded blastocysts following storage for 1, 2 and 3 d, respectively. Eighty five and 38% of eight-cell embryos formed expanded blastocysts following cold storage for 3 and 4 d, respectively. Survival rates for cold stored morulae and blastocysts remained above 75% for 6 d but decreased significantly to 30 and 36%, respectively, when stored for 8 d. A large percentage of blastocysts were observed to collapse when placed in cold storage from 1 to 8 d but almost all expanded when placed in culture at 37 degrees C. This study showed that one-cell embryos were particularly sensitive to cold storage compared to later-stage mouse embryos. Cold storage survival increased with increasing age of the embryo; morula and blastocyst survival rate was similar.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号