首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The amino acid sequence of the glycopeptide obtained from bovine PASII/PMP22 protein in the PNS myelin was determined to be Gln-Asn-Cys-Ser-Thr, where the asparagine was glycosylated. To eliminate all the contaminated P(o) glycopeptides from the PASII/PMP22 glycopeptide preparation, we used a fluorescent probe, N-[2-(2-pyridylamino)ethyl]maleimide, which reacts with the cysteine of the PASII/PMP22 glycopeptides. The labeled PASII/PMP22 glycopeptides were isolated by HPLC and were digested further with glycopeptidase A. The resultant oligosaccharides were conjugated with 2-aminopyridine (PA) as a fluorescent tag. One major PA-oligosaccharide, OPPE1, was purified by HPLC. The structure of OPPE1 was elucidated by fast atom bombardment mass spectrometry and (1)H-NMR studies and comparing the derivatives of PA-OPPE1 and PA-oligosaccharides of gamma-globulin on HPLC. The structure, SO(4)-3GlcAbeta1-3Galbeta1-4GlcNAcbeta1-2Manalpha1+ ++-6(GlcNAcbeta1-4) (GlcNAcbeta1-2Manalpha1-3)Manbeta1-4GlcNAcbeta1- 4(Fucalpha1-6)GlcNAc- PA, was identical to the pyridylaminated form of the major oligosaccharide D8 of bovine P(o) previously reported.  相似文献   

2.
The P0 protein is part of the ribosomal eukaryotic stalk, which is an elongated lateral protuberance of the large ribosomal subunit involved in the translocation step of protein synthesis. P0 is the minimal portion of the stalk that is able to support accurate protein synthesis. The P0 C-terminal peptide is highly antigenic and a major target of the antibody response in patients with systemic lupus erythematosus and patients suffering chronic heart disease produced by the Trypanosoma cruzi parasite. The T. cruzi P0 (TcP0) protein was cloned into the pRSET A vector and expressed in Escherichia coli fused to a His-tag. The identity of the protein was confirmed by immunoblotting. Due to the formation of inclusion bodies the protein was purified using the following steps: (i) differential centrifugation to separate the inclusion bodies from soluble proteins and (ii) affinity chromatography under denaturing conditions. TcP0 showed high tendency to aggregation during refolding assays. However, TcP0 could be efficiently folded in the presence of a low concentration of SDS. The folding of the protein was confirmed using urea gradient electrophoresis, limited proteolysis, circular dichroism, and tryptophan fluorescence. Native electrophoresis showed that the folded TcP0 (and not a folding intermediate) was the cause of aggregation in the absence of SDS. The protocol described here permitted us to obtain large amounts (up to 30 mg per culture liter) of pure and folded TcP0, a very hydrophobic protein with a high tendency to aggregation.  相似文献   

3.
The peripheral myelin gene PMP22 is the rat and human homologue of the murine growth arrest-specific gene gas3. Besides a putative role of PMP22 in myelination, a regulatory function in cell growth has been suspected. Here we have investigated both the expression of PMP22 during cell cycle progression of cultured rat Schwann cells and the influence of altered levels of PMP22 on Schwann cell growth. When resting cells were stimulated to begin the cell cycle, the regulation of PMP22 mRNA resembled the growth arrest-specific pattern of gas3 expression observed previously in NIH3T3 fibroblasts. To prove a growth regulatory function of PMP22, we generated Schwann cell cultures by infection with retroviral PMP22 expression vectors that constitutively expressed PMP22 cDNA sequences, in either the sense or antisense orientation. Transduced cells carrying the sense construct overexpressed PMP22 mRNA and protein, whereas in cells infected with an antisense PMP22 expression vector PMP22 mRNA levels were reduced markedly. Altered levels of PMP22 significantly modulated Schwann cell proliferation, as judged by 5-bromo-2'-deoxy-uridine incorporation into replicated DNA. In asynchronously dividing cultures enhanced expression of PMP22 decreased DNA synthesis to 60% of the control level. Conversely, reduced levels of PMP22 mRNA led to enhanced DNA synthesis of approximately 150%. Further cell cycle analyses by flow cytometry revealed that overexpression of PMP22 delayed serum- and forskolin-stimulated entry of resting Schwann cells from G0/G1 into the S + G2/M phases by approximately 8 h, whereas underexpression of PMP22 mRNA slightly increased the proportion of cells that entered the S + G2/M phases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The Trypanosoma cruzi ribosomal P0 protein (TcP0) is part of the ribosomal stalk, which is an elongated lateral protuberance of the large ribosomal subunit involved in the translocation step of protein synthesis. The TcP0 C-terminal peptide is highly antigenic and a major target of the antibody response in patients with systemic lupus erythematosus and patients suffering chronic heart disease produced by Trypanosoma cruzi infection. The structural properties of TcP0 have been explored by circular dichroism, tryptophan fluorescence and limited proteolysis experiments. These studies were complemented by secondary structure consensus prediction analysis. The results suggest that the tertiary structure of TcP0 could be described as a compact, stable, trypsin-resistant, 200 residues long N-terminal domain belonging to the alpha/beta class and a more flexible, degradable, helical, 123 residues long C-terminal domain which could be involved in the formation of an unusual hydrophobic zipper with the ribosomal P1/P2 proteins to form the P0/P1/P2 complex.  相似文献   

5.
Protein zero (P0) and peripheral myelin protein 22 (PMP22) are most prominently expressed by myelinating Schwann cells as components of compact myelin of the peripheral nervous system (PNS), and mutants affecting P0 and PMP22 show severe defects in myelination. Recent expression studies suggest a role of P0 and PMP22 not only in myelination but also during embryonic development. Here we show that, in dorsal root ganglia (DRG) and differentiated neural crest cultures, P0 is expressed in the glial lineage whereas PMP22 is also detectable in neurons. In addition, however, P0 and PMP22 are both expressed in a multipotent cell type isolated from early DRG. Like neural crest stem cells (NCSCs), this P0/PMP22-positive cell gives rise to glia, neurons and smooth-muscle-like cells in response to instructive extracellular cues. In cultures of differentiating neural crest, a similar multipotent cell type can be identified in which expression of P0 and PMP22 precedes the appearance of neural differentiation markers. Intriguingly, this P0/PMP22-positive progenitor exhibits fate restrictions dependent on the cellular context in which it is exposed to environmental signals. While single P0/PMP22-positive progenitor cells can generate smooth muscle in response to factors of the TGF-(beta) family, communities of P0/PMP22-positive cells interpret TGF-(beta) factors differently and produce neurons or undergo increased cell death instead of generating smooth-muscle-like cells. Our data are consistent with a model in which cellular association of postmigratory multipotent progenitors might be involved in the suppression of a non-neural fate in forming peripheral ganglia.  相似文献   

6.
PMP22 is a structural protein of Schwann cells, but it also influences cell proliferation. In the present study, quantitative RT-PCR (QRT-PCR) and immunohistochemistry were used to determine PMP22 mRNA levels and to localize PMP22 in the normal pancreas (n=20), chronic pancreatitis (CP) (n=22), pancreatic ductal adenocarcinoma (PDAC) (n=31), intraductal papillary mucinous neoplasms (IPMN) (n=9), mucinous cystic tumors (MCN) (n=4), and in a panel of PanIN lesions (n=29). PMP22 mRNA levels were significantly higher in CP (3-fold) and PDAC (2.5-fold), compared to normal pancreatic tissues. PMP22 expression was restricted to nerves in the normal pancreas, while in CP and PDAC PMP22 was also expressed in PanIN lesions and in a small percentage of pancreatic cancer cells. PMP22 was weak to absent in the tumor cells of IPMNs and MCNs. PMP22 mRNA was present at different levels in cultured pancreatic cancer cells and up-regulated by transforming growth factor (TGF)-beta1 in 2 of 8 of these cell lines. In conclusion, PMP22 expression is present in both CP and PDAC tissues. Its expression in PanIN lesions and some pancreatic cancer cells in vitro and in vivo suggests a role of PMP22 in the neoplastic transformation process from the normal pancreas to pre-malignant lesions to pancreatic cancer.  相似文献   

7.
8.
P(0), a major structural protein of peripheral myelin, belongs to the immunoglobulin superfamily. Sequence comparison of P(0) with PZR, a tyrosine phosphatase SHP-2 binding protein we recently cloned, revealed the presence of an immunoreceptor tyrosine-based inhibitory motif (ITIM) in the intracellular portion of the P(0) molecule. To study the role of this putative ITIM in signal transduction, we have expressed P(0) in HT-1080 and 293 cells. Stimulation of the transfected cells with pervanadate, a powerful inhibitor of tyrosine phosphatases, resulted in tyrosine phosphorylation of P(0) and its association with several tyrosine-phosphorylated proteins. Mutation of Y(220) embedded in the ITIM to phenylalanine abolished the tyrosine phosphorylation and the association. Tyrosine phosphorylation of P(0) and its association with other signaling proteins were also observed in pervanadate-treated RN22 Schwannoma cells, which express endogenous P(0). Furthermore, injection of pervanadate induced tyrosine phosphorylation of P(0) in peripheral nerves of newborn but not adult mice. The physiological importance of the ITIM in P(0) is implied by the fact that a naturally occurred P(0) mutant with a disrupted ITIM has a dominant role in causing Dejerine-Scotts syndrome. Taken together, P(0) is phosphorylated on Try(220). The presence of an ITIM in P(0) and its ability to mediate protein-protein interaction through tyrosine phosphorylation indicate that P(0) is not merely a structural protein but may also be a crucial player in cell signaling.  相似文献   

9.
10.
Gas3/PMP22 plays a crucial role in regulating myelin formation and maintenance, and different genetic alterations in gas3/PMP22 are responsible for a set of human peripheral neuropathies. We have previously demonstrated that Gas3/PMP22 could regulate susceptibility to apoptosis in NIH3T3 cells but not in REF 52 cells. In this report we demonstrate that when the apoptotic response triggered by gas3/PMP22 was counteracted by Bcl-2 coexpression, morphological changes were observed. Time-lapse analysis confirmed that Gas3/PMP22 can modulate cell spreading, and this effect was strengthened after inhibition of phosphoinositide 3-kinase. Using the active form of the small GTPase RhoA, we have been able to dissect the different Gas3/PMP22 biological activities. RhoA counteracted the Gas3/PMP22-dependent morphological response but was unable to neutralize the apoptotic response. Treatment of NIH3T3 cells with cytotoxic necrotizing factor 1, which activates endogenous Rho, also counteracted Gas3/PMP22-mediated cell shape and spreading changes. Treatment of REF 52 cells, which are unresponsive to Gas3/PMP22 overexpression, with the C3 exoenzyme, inhibiting Rho activity, renders REF 52 cells responsive to Gas3/PMP22 overexpression for cell shape and spreading changes. Finally, assembly of stress fibers and focal adhesions complexes, in response to lysophosphatidic acid-induced endogenous Rho activation, was impaired in Gas3/PMP22-overexpressing cells. We hypothesize that cell shape and spreading regulated by Gas3/PMP22 through the Rho GTPase might have an important role during Schwann cells differentiation and myelinization.  相似文献   

11.
Baxa U  Cooper A  Weintraub A  Pfeil W  Seckler R 《Biochemistry》2001,40(17):5144-5150
The structural thermodynamics of the recognition of complex carbohydrates by proteins are not well understood. The recognition of O-antigen polysaccharide by phage P22 tailspike protein is a highly suitable model for advancing knowledge in this field. The binding to octa- and dodecasaccharides derived from Salmonella enteritidis O-antigen was studied by isothermal titration calorimetry and stopped-flow spectrofluorimetry. At room temperature, the binding reaction is enthalpically driven with an unfavorable change in entropy. A large change of -1.8 +/- 0.2 kJ mol(-1) K(-1) in heat capacity suggests that the hydrophobic effect and water reorganization contribute substantially to complex formation. As expected from the large heat-capacity change, we found enthalpy-entropy compensation. The calorimetrically measured binding enthalpies were identical within error to van't Hoff enthalpies determined from fluorescence titrations. Binding kinetics were determined at temperatures ranging from 10 to 30 degrees C. The second-order association rate constant varied from 1 x 10(5) M(-1) s(-1) for dodecasaccharide at 10 degrees C to 7 x 10(5) M(-1) s(-1) for octasaccharide at 30 degrees C. The first-order dissociation rate constants ranged from 0.2 to 3.8 s(-1). The Arrhenius activation energies were close to 50 and 100 kJ mol(-1) for the association and dissociation reactions, respectively, indicating mainly enthalpic barriers. Despite the fact that this system is quite complex due to the flexibility of the saccharide, both the thermodynamic and kinetic data are compatible with a simple one-step binding model.  相似文献   

12.
Calculation and combined visualization of electrostatic and hydrophobic properties of Cytochrome P450scc based on two very different homology models allowed to identify extensive hydrophobic patches with neutral electrostatic potential and mutations removing such patches and thus expecting to facilitate crystallization of Cytochrome P450scc, especially for the nanotemplate crystallization method. Implications are discussed for optimizing crystallization and other aspects of protein surface properties and protein recognition.  相似文献   

13.
Peroxisomal membrane protein 22, PMP22, is an integral membrane protein that has four putative transmembrane-spanning regions. First reported as a major component of rat liver peroxisomal membranes and suggested to be involved in the metabolism of reactive oxygen species, its function and structure are still unknown owing to a lack of biochemical and structural experiments. Here we report the overproduction and purification of rat PMP22 (rPMP22) with the use of a methylotrophic yeast, Pichia pastoris, as a host. rPMP22 was localized not to peroxisomal membranes but to membrane compartments, such as the nuclear envelope. Highly pure rPMP22 was obtained in two steps. Several physicochemical assays indicated that the purified preparation should retain its functional structure. Furthermore, fed-batch fermentation yielded 90 mg of rPMP22 protein from 4L of culture. This is the first report to demonstrate the overproduction of a recombinant rPMP22 in the membrane compartments of P. pastoris.  相似文献   

14.
In this work we analyzed variations in the expression of MBPs and P0 in ligated sciatic nerves of young and adult rats at 3, 7, and 14 days postligation (PL), by immunohistochemistry and SDS-PAGE of isolated myelin. A protein redistribution was seen in the distal stump of ligated nerves with the appearance of immunoreactive clusters. Using the KS400 image analyzer, immunostained area values were obtained from the different nerves dissected. In adult rats, there was an increase of the immunostained area for MBP from 3 to 7 days PL, coincident with a reorganization of the marker in clusters, followed by a marked decrease at 14 days. P0 immunolabeling gave similar results without, however, a decrease of the immunostained area at the longer survival time tested. Young animals showed an acceleration in the process of protein redistribution and digestion within ligated nerves, which followed a similar pattern as that of adult animals. Analysis by electrophoresis showed a marked decrease in P0 and MBP at 7 days PL in young rats and 14 days PL in adult rats. The functional significance of protein clustering within myelin in injured nerves deserves further analysis.  相似文献   

15.
M T Filbin  G I Tennekoon 《Neuron》1991,7(5):845-855
The most abundant protein of peripheral nerve myelin, a glycoprotein termed P0, is believed to be involved in the compaction of the myelin sheath and is postulated to be the closest relative to the ancestral gene for the immunoglobulin superfamily. Recently, P0 has indeed been shown to behave like a homophilic adhesion molecule via interactions of its extracellular domains. Here we demonstrate the importance of the oligosaccharide moieties of P0 in its functioning as a homophilic adhesion molecule. Expression of the complex form of P0 glycoprotein in transfected Chinese hamster ovary cells greatly increased the adhesiveness of those cells, whereas expression of the high-mannose form of P0 glycoprotein did not. This is the first step in the dissection of P0-P0 interaction at the molecular level.  相似文献   

16.
17.
Membrane preparations from chick peripheral nervous system (PNS) catalyzed the transfer of [3H]glucose from UDP-[3H]glucose into glucosylphosphoryl dolichol. The initial rate of glucosylphosphoryl dolichol formation in a non-myelin membrane fraction from actively myelinating chick PNS was 11 fold higher than that from adult. Exogenous dolichyl monophosphate stimulated glucosylphosphoryl dolichol synthesis in both fractions. The higher level of glucosylphosphoryl dolichol synthesis corresponded to the onset of myelination in chick PNS. Exogenous dolichyl monophosphate also stimulated the labeling of glucosylated oligosaccharide lipids and glycoproteins in the fraction. On SDS polyacrylamide gel electrophoresis, the relative mobility of the major and minor radioactive glycoprotein corresponded with that of the P0 and PASII glycoprotein in PNS myelin, respectively. The results suggest that myelin glycoproteins in PNS are glycosylated via lipid intermediates.  相似文献   

18.
P0 protein, the dominant protein in peripheral nervous system myelin, was studied immunocytochemically in both developing and mature Schwann cells. Trigeminal and sciatic nerves from newborn, 7-d, and adult rats were processed for transmission electron microscopy. Alternating 1- micrometer-thick Epon sections were stained with paraphenylenediamine (PD) or with P0 antiserum according to the peroxidase-antiperoxidase method. To localize P0 inSchwann cell cytoplasm and myelin membranes, the distribution of immunostaining observed in 1-micrometer sections was mapped on electron micrographs of identical areas found in adjacent thin sections. The first P0 staining was observed around axons and/or in cytoplasm of Schwann cells that had established a 1:1 relationship with axons. In newborn nerves, staining of newly formed myelin sheaths was detected more readily with P0 antiserum than with PD. Myelin sheaths with as few as three lamellae could be identified with the light microscope. Very thin sheaths often stained less intensely and part of their circumference frequently was unstained. Schmidt-Lanterman clefts found in more mature sheaths also were unstained. As myelination progressed, intensely stained myelin rings became much more numerous and, in adult nerves, all sheaths were intensely and uniformly stained. Particulate P0 staining also was observed in juxtanuclear areas of Schwann cell cytoplasm. It was most prominent during development, then decreased, but still was detected in adult nerves. The cytoplasmic areas stained by P0 antiserum were rich in Golgi complex membranes.  相似文献   

19.
P0 glycoprotein is the major structural protein of peripheral nerve myelin where it is thought to modulate inter-membrane adhesion at both the extracellular apposition, which is labile upon changes in pH and ionic strength, and the cytoplasmic apposition, which is resistant to such changes. Most studies on P0 have focused on structure-function correlates in higher vertebrates. Here, we focused on its role in the structure and interactions of frog (Xenopus laevis) myelin, where it exists primarily in a dimeric form. As part of our study, we deduced the full sequence of X. laevis P0 (xP0) from its cDNA. The xP0 sequence was found to be similar to P0 sequences of higher vertebrates, suggesting that a common mechanism of PNS myelin compaction via P0 interaction might have emerged through evolution. As previously reported for mouse PNS myelin, a similar change of extracellular apposition in frog PNS myelin as a function of pH and ionic strength was observed, which can be explained by a conformational change of P0 due to protonation-deprotonation of His52 at P0's putative adhesive interface. On the other hand, the cytoplasmic apposition in frog PNS myelin, like that in the mouse, remained unchanged at different pH and ionic strength. The contribution of hydrophobic interactions to stabilizing the cytoplasmic apposition was tested by incubating sciatic nerves with detergents. Dramatic expansion at the cytoplasmic apposition was observed for both frog and mouse, indicating a common hydrophobic nature at this apposition. Urea also expanded the cytoplasmic apposition of frog myelin likely owing to denaturation of P0. Removal of the fatty acids that attached to the single Cys residue in the cytoplasmic domain of P0 did not change PNS myelin structure of either frog or mouse, suggesting that the P0-attached fatty acyl chain does not play a significant role in PNS myelin compaction and stability. These results help clarify the present understanding of P0's adhesion role and the role of its acylation in compact PNS myelin.  相似文献   

20.
Ultrastructural studies have shown that during early stages of Schwann cell myelination mesaxon membranes are converted to compact myelin lamellae. The distinct changes that occur in the spacing of these Schwann cell membranes are likely to be mediated by the redistribution of (a) the myelin-associated glycoprotein, a major structural protein of mesaxon membranes; and (b) P0 protein, the major structural protein of compact myelin. To test this hypothesis, the immunocytochemical distribution of these two proteins was determined in serial 1-micron-thick Epon sections of ventral roots from quaking mice and compared to the ultrastructure of identical areas in an adjacent thin section. Ventral roots of this hypomyelinating mouse mutant were studied because many fibers have a deficit in converting mesaxon membranes to compact myelin. The results indicated that conversion of mesaxon membranes to compact myelin involves the insertion of P0 protein into and the removal of the myelin-associated glycoprotein from mesaxon membranes. The failure of some quaking mouse Schwann cells to form compact myelin appears to result from an inability to remove the myelin-associated glycoprotein from their mesaxon membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号