首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heparin and related glycosaminoglycans are potent inhibitors of both in vivo and in vitro smooth muscle cell (SMC) proliferation. We have found that epidermal growth factor (EGF) reverses the antiproliferative effects of heparin. Other known SMC mitogens, including platelet-derived growth factor (PDGF), insulin-like growth factor-1 (IGF-1), and thrombin, were unable to prevent heparin action. The EGF specificity was further demonstrated by developing a biological growth assay in which EGF or PDGF, at concentrations as low as 1 ng/ml, stimulated SMC growth in the absence of other serum components. Under these conditions, EGF, but not PDGF, suppressed heparin inhibition as well. The ability of EGF to reverse heparin inhibition was only observed when mitogen and glycosaminoglycan were added to SMC at similar times. If SMC were pretreated with heparin for 48 hours prior to EGF addition, the protective effects of EGF were lost. Heparin did not directly prevent 125I-EGF or platelet-derived EGF-like peptides from binding to the EGF receptor on SMC. However, cultures that were pretreated with heparin for 48 hours bound 49% less 125I-EGF than cultures that had been pretreated with the mucopolysaccharide for only 2 hours or that had not been preexposed to heparin. In previous studies, we have established that heparin exerts its maximal inhibitory activity after a 48-hour treatment of SMC (Reilly et al. 1986). Taken together, these data suggest that heparin may exert its antiproliferative potential by slowly and specifically altering SMC response to EGF-like mitogens of platelet origin.  相似文献   

2.
The potential of a given amount of heparin to inhibit smooth muscle cell (SMC) proliferation can be increased more than 13 fold if quiescent cultures are pretreated with this mucopolysaccharide for 48 h. The large increase in antiproliferative activity was attributable to a 74% inhibition of the first cell cycle traverse of SMC after serum addition. If the mucopolysaccharide was added to SMC coincident with serum, the initial cell cycle traverse was only suppressed by 27%. In both heparin pretreated and nonpretreated SMC cultures, 48 to 72 h elapsed before substantial inhibition was observed. The inhibitory effects of heparin were reversible and inversely proportional to the starting cell density of the cultures. The effects of known heparin binding proteins on the inhibitory capability of heparin were examined. Neither platelet-derived growth factor (PDGF), low density lipoprotein (LDL), nor platelet factor 4 (PF4) were able to reduce the antiproliferative effects. Heparin retained full biological activity in medium containing serum depleted of all heparin binding proteins by heparin-Sepharose chromatography. These results indicate that heparin does not inhibit growth by preventing serum mitogens or nutrients from interacting with SMC. Rather, our data suggest that heparin is slowly internalized by SMC following binding to specific, non-PF4 dissociable sites. Heparin may accumulate intracellularly and block a crucial point in the proliferative machinery of SMC.  相似文献   

3.
The control of smooth muscle cell (SMC) proliferation is determined by the combined actions of mitogens, such as platelet-derived growth factor, and the opposing action of growth inhibitory agents, such as heparin and transforming growth factor-beta (TGF-beta). The present studies identify an interaction between heparin and TGF-beta in which heparin potentiates the biological action of TGF-beta. Using a neutralizing antibody to TGF-beta, we observed that the short term antiproliferative effect of heparin depended upon the presence of biologically active TGF-beta. This effect was observed in rat and bovine aortic SMC and in CCL64 cells, but not in human saphenous vein SMC. Binding studies demonstrated that the addition of heparin (100 micrograms/ml) to medium containing 10% plasma-derived serum resulted in a 45% increase in the specific binding of 125I-TGF-beta to cells. Likewise, heparin induced a twofold increase in the growth inhibitory action of TGF-beta at concentrations of TGF-beta near its apparent dissociation constant. Using 125I-labeled TGF-beta, we demonstrated that TGF-beta complexes with the plasma component alpha 2-macroglobulin, but not with fibronectin. Heparin increases the electrophoretic mobility of TGF-beta apparently by freeing TGF-beta from its complex with alpha 2-macroglobulin. Dextran sulfate, another highly charged antiproliferative molecule, but not chondroitin sulfate or dermatan sulfate, similarly modified TGF-beta's mobility. Relatively high, antiproliferative concentrations of heparin (1-100 micrograms/ml) were required to dissociate the TGF-beta/alpha 2-macroglobulin complex. Thus, it appears that the antiproliferative effect of heparin may be partially attributed to its ability to potentiate the biological activity of TGF-beta by dissociating it from alpha 2-macroglobulin, which normally renders it inactive. We suggest that heparin-like agents may be important regulators of TGF-beta's biological activity.  相似文献   

4.
We previously reported that heparin inhibits the proliferation of fibroblasts and vascular smooth muscle cells (SMC), in part, by binding to and increasing the antiproliferative activity of transforming growth factor-beta 1 (TGF-beta 1). We now report that certain other polyanions which are structurally distinct from heparin, such as fucoidan and polyinosinic acid, are more avid ligands for TGF-beta 1 and more potent antiproliferative agents than heparin. Fucoidan possessed more potent antiproliferative activity than heparin against rat and bovine aortic SMC in vitro, though possessing much lower anticoagulant activity than heparin. Furthermore, fucoidan suppressed in vivo intimal hyperplasia when continuously infused into rats subjected to balloon-catheter injury. Unlike heparin, which also suppressed intimal hyperplasia, fucoidan did not cause systemic anticoagulation. Thus, fucoidan may be useful as a non-anticoagulant inhibitor of post-angioplasty intimal hyperplasia.  相似文献   

5.
Heparin and heparan sulfates are regulators of cellular events including adhesion, proliferation and migration. In particular, the antiproliferative effect of heparin on smooth muscle cell (SMC) growth is well described. However, its mechanism of action remains unclear. Numerous results suggest an endocytosis mediated by a still unknown heparin receptor on vascular SMCs. In order to identify a putative heparin receptor on SMCs that could be involved in heparin signalling, affinity chromatography supports were developed. In this paper, we describe high-performance liquid affinity chromatography (HPLAC) supports obtained from silica beads coated with dextran polymer substituted by a calculated amount of diethylaminoethyl functions. With a polysaccharide dextran layer, this type of support can be grafted with specific ligands, such as heparin, using conventional coupling methods. In a previous work, we demonstrated, using butanedioldiglycidyl ether, that silica stationary phases coupled to heparin could be used for the fast elution and good peak resolution of heparin-binding proteins. In the present work, an affinity chromatographic fraction of SMC membrane extracts was analyzed by sodium dodecyl sulfate–polyacrylamide gel electrophoresis (SDS–PAGE) and six heparin-binding proteins from dodecyloctaethyleneglycol monoether-solubilized SMCs were observed. Their Mr values were between 40 and 70 kDa, with three major protein bands at 66, 45 and 41 kDa. These results indicate the usefulness of the chromatographic method for purifying heparin binding proteins from SMC membrane.  相似文献   

6.
Scatchard analysis of binding of 125I-basic fibroblast growth factor (FGF) to baby hamster kidney (BHK) cells revealed the presence of two binding sites: a high affinity site with KD of 20 pM and 80,000 sites per cell and a low affinity site with KD of about 2 nM and 600,000 sites per cell. The binding to the two sites could be separated by first washing the cells with 2 M NaCl at pH 7.5 which released the low affinity binding and then extracting the cells with 0.5% Triton X-100 to recover the 125I-basic FGF bound to high affinity sites. The binding to the high affinity site was acid sensitive, suggesting that it represented binding to the receptor. Binding to the low affinity site could be competed strongly by heparin and less strongly by heparan sulfate but not by chondroitin sulfate, dermatan sulfate, or keratan sulfate. Treatment of BHK cells with heparinase abolished 62% of the low affinity binding, suggesting that the low affinity binding represented binding to cell-associated, heparin-like molecules. A variety of other cell types, including bovine capillary endothelial (BCE) cells, also demonstrated both low and high affinity binding sites. To test whether the low affinity binding might play a role in the basic FGF stimulation of plasminogen activator (PA) production by BCE cells, heparin was added to BCE cultures at concentrations which totally blocked binding of 125I-basic FGF to the low affinity sites. Addition of the heparin did not diminish the increased PA production induced by basic FGF. This suggests that the low affinity binding has no direct role in the stimulation of PA production in BCE cells.  相似文献   

7.
Endostatin (20 kDa) is a C-terminal proteolytic fragment of collagen XVIII that is localized in vascular basement membrane zones in various organs. It binds zinc, heparin/heparan sulfate, laminin, and sulfatides and inhibits angiogenesis and tumor growth. Here we determined the kinetics and affinity of the interaction of endostatin with heparin/heparan sulfate and investigated the effects of divalent cations on these interactions and on the biological activities of endostatin. The binding of human recombinant endostatin to heparin and heparan sulfate was studied by surface plasmon resonance using BIAcore technology and further characterized by docking and molecular dynamics simulations. Kinetic data, evaluated using a 1:1 interaction model, showed that heparan sulfate bound to and dissociated from endostatin faster than heparin and that endostatin bound to heparin and heparan sulfate with a moderate affinity (K(D) approximately 2 microm). Molecular modeling of the complex between endostatin and heparin oligosaccharides predicted that, compared with mutagenesis studies, two further arginine residues, Arg(47) and Arg(66), participated in the binding. The binding of endostatin to heparin and heparan sulfate required the presence of divalent cations. The addition of ZnCl(2) to endostatin enhanced its binding to heparan sulfate by approximately 40% as well as its antiproliferative effect on endothelial cells stimulated by fibroblast growth factor-2, suggesting that this activity is mediated by the binding of endostatin to heparan sulfate. In contrast, no increase in the antiangiogenic and anti-proliferative activities of endostatin promoted by vascular endothelial growth factor was observed upon the addition of zinc.  相似文献   

8.
Rat aortic smooth muscle cells (SMC) have been established by retroviral delivery of the complementary DNA (cDNA) for the simian virus 40 large T antigen (SV40LT) and examined for SMC phenotypic markers and growth characteristics, including responsiveness to the antiproliferative effects of heparin. The transfected cells (SV40LT-SMC) maintain defined SMC characteristics for more than 215 population doublings (PD) as judged by muscle-specific actin expression and growth inhibition by heparin. SV40LT-SMC greater than 129 PD become transformed while SV40LT-SMC less than 77 PD resemble nontransfected SMC morphologically and are nontumorigenic. SV40LT-SMC apparently release a growth factor which acts in an autocrine fashion, since (1) suramin inhibits SV40LT-SMC proliferation, (2) SV40LT-SMC-conditioned medium (CM) contains mitogenic activity, and (3) SV40LT-SMC CM suppresses the binding of platelet-derived growth factor to SMC. Heparin (10-100 micrograms/ml) is a potent inhibitor of both early (less than 80 PD) and late-passage (greater than 80 PD) SV40LT-SMC proliferation. The antiproliferative effects of heparin are similar to those previously observed for SMC by several criteria; the dose-response inhibition curves are indistinguishable from those obtained with nontransfected cells, other glycosaminoglycans have little effect on SV40LT-SMC growth, the antiproliferative effects of heparin are reversed in the presence of epidermal growth factor, and heparin displays high-affinity saturable binding to SV40LT-SMC. In conclusion, SV40LT-SMC are a continuous line of SMC-like cells that are sensitive to the growth inhibitor, heparin. SV40LT-SMC should facilitate studies of heparin inhibition and may be applicable for the study of other SMC characteristics as well.  相似文献   

9.
Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that has a high affinity for heparin and heparan sulfate. While interactions with heparin are thought to modulate the biological activity of HB-EGF, the precise role of the heparin-binding domain has remained unclear. We analyzed the activity of wild-type HB-EGF and a mutant form lacking the heparin-binding domain (DeltaHB) in the presence or absence of heparin. The activity of the EGF-like domain of HB-EGF was determined by measuring binding to diphtheria toxin (DT) as well as the growth factor activity in EGF receptor-expressing cells. The binding affinity of DeltaHB for DT was much higher than that of wild-type HB-EGF in the absence of heparin. The binding affinity of HB-EGF for DT was increased by addition of exogenous heparin and reached the level close to the affinity of DeltaHB, whereas that of DeltaHB was not affected. Moreover, the growth factor activity of DeltaHB was much higher than that of wild-type HB-EGF in the absence of heparin but was not affected by addition of exogenous heparin, whereas HB-EGF had increased growth factor activity with added heparin. These results indicate that the heparin-binding domain suppresses the activity of the EGF-like domain of HB-EGF and that association of heparin with HB-EGF via this domain removes the suppressive effect. Thus, we conclude that the heparin-binding domain serves as a negative regulator of this growth factor.  相似文献   

10.
Transforming growth factor-beta (TGF-beta) is a bifunctional, density-dependent regulator of vascular smooth muscle cell (SMC) proliferation in vitro (at sparse densities SMC are growth-inhibited by the peptide, whereas at confluent densities TGF-beta potentiates their growth). We have used affinity labeling and ligand binding techniques to characterize cell surface receptors for TGF-beta under sparse and confluent culture conditions. Confluent SMC, whose growth are promoted by TGF-beta, exhibited a single class of high affinity TGF-beta binding sites (Kd = 6 pM, 3,000 sites/cell). In contrast, sparse SMC (whose growth are inhibited by TGF-beta) expressed two distinct classes of high affinity binding sites with binding constants of 6 pM (3,000 sites/cell) and 88 pM (11,000 sites/cell). By affinity labeling using 125I-TGF-beta and disuccinimidyl suberate cross-linking, confluent cells were found to express a major Mr = 280,000 TGF-beta receptor as well as trace amounts of low molecular weight (Mr = 85,000 and 65,000) receptor subtypes. All three of these receptors were determined, by ligand competition, to show similar affinity for TGF-beta. The predominant receptor subtypes expressed by sparse SMC exhibited apparent Mr = 75,000 and 65,000. In ligand competition experiments, the Mr = 75,000 receptor subtype (never present in confluent cultures) exhibited lower relative affinity for TGF-beta than did the Mr = 65,000 form. The ability of TGF-beta to inhibit SMC proliferation, therefore, correlates with the expression of a unique TGF-beta-binding protein on the SMC surface. The data suggest that TGF-beta may exert opposite biological effects on the same cell type via an interaction with distinct, selectively expressed receptor subtypes.  相似文献   

11.
Basic fibroblast growth factor (bFGF) was internalized at a rapid rate by Chinese hamster ovary (CHO) cells that do not express significant numbers of high affinity receptors for bFGF as well as CHO cells that have been transfected with cDNA encoding FGF receptor-1 or FGF receptor-2. Internalization of bFGF was completely blocked by the addition of 10 micrograms/ml heparin in the parental CHO cells but only partially inhibited in cells expressing transfected FGF receptors. Bovine aortic endothelial cells also exhibit heparin-sensitive and heparin-resistant internalization of bFGF. The internalization of bFGF through the heparin-resistant pathway in CHO cells was efficiently competed by addition of unlabeled bFGF, was proportional to the number of receptors expressed, and approached saturation, suggesting that the heparin-resistant internalization was due to high affinity receptors. Internalization of bFGF through the heparin-sensitive pathway was not efficiently competed by unlabeled bFGF and did not approach saturation at concentrations of bFGF up to 50 ng/ml, properties similar to the interaction of bFGF with low affinity heparan sulfate binding sites on the cell surface. Internalization of bFGF in CHO cells not expressing FGF receptors was inhibited by heparin, heparan sulfate, and dermatan sulfate, the same glycosaminoglycans that block binding to cell-surface heparin sulfates. Internalization of bFGF in the parental CHO cells was inhibited at the same concentrations of heparin that block binding to cell-surface heparan sulfates. Finally, inhibition of the sulfation of CHO cell heparan sulfates by the addition of chlorate or digestion of CHO cell heparan sulfates with heparinase inhibited bFGF internalization in the parental CHO cells. These results demonstrate that bFGF can be internalized through a direct interaction with cell-surface heparan sulfates. Thus, there are two pathways for internalization of bFGF: high affinity receptor-mediated and heparan sulfate-mediated.  相似文献   

12.
Effect of epidermal growth factor on rat pleural mesothelial cell growth   总被引:2,自引:0,他引:2  
We recently reported that the growth of normal rat pleural mesothelial cells (RPMCs) is inhibited by conditioned media from either in vivo or in vitro transformed RPMCs. In this study we report that the growth of normal RPMCs is inhibited by epidermal growth factor (EGF). This was demonstrated by using three methods of investigation. Two types of studies were carried out with growing cells. First, cell counts indicated that the number of cells was reduced in EGF-treated cultures when compared with untreated cultures. Second, the percentage of S cells detected by flow cytometry following treatment with EGF was lower than without EGF. In other experiments, incorporation of tritiated thymidine in confluent cells was decreased by EGF treatment, either in the presence or absence of fetal calf serum; these effects were dose dependent and were observed from 2 ng/ml EGF. Lower EGF concentrations did not significantly modify thymidine incorporation when compared with untreated cells. Analysis of 125I EGF binding experiments by the Scatchard method indicated that RPMCs posses EGF receptors (about 10(5) per cell) with low ligand binding affinity (Kd = 1.7 +/- 0.4 nM). These results indicate that EGF might modulate the growth of RPMCs.  相似文献   

13.
Rhodamine-labelled epidermal growth factor (Rh-EGF) was shown to bind to A431 cells grown at low density both to a small number of high affinity receptors (KD = 2.8 X 10(-10) M; fraction of total binding sites approximately 0.12) and also to a large number of low affinity receptors (KD = 4 X 10(-9) M; fraction of total binding sites approximately 0.88). Measurements of the lateral diffusion of EGF receptors on the cell surface were made using Rh-EGF and the technique of fluorescence photobleaching recovery. The high affinity receptors (labelled with 1.6 X 10(-10) M Rh-EGF, 5% of EGF binding sites occupied) did not show lateral mobility over the temperature range 3 degrees-37 degrees C. The low affinity receptors (labelled with 2.4 X 10(-7) M Rh-EGF, 90% of EGF sites occupied) showed at least 75% fluorescence recovery after photobleaching, and lateral diffusion coefficients of approximately 2 X 10(-10) cm2/s. These results show that the two populations of EGF receptors defined by binding studies differ in their freedom to diffuse laterally. The observation that the high affinity receptors are immobile indicates that lateral diffusion of receptors, at least over a distance of a few hundred nanometres or more, may not be required for the action of low concentrations of EGF.  相似文献   

14.
15.
Heparin and heparin-like molecules may function, apart from their effect on hemostasis, as regulators of cell growth and neovascularization. We investigated whether similar effects are exerted by laminarin sulfate, an unrelated polysulfated saccharide isolated from the cell wall of seaweed and composed of chemically O-sulfated b?-(1,3)-linked glucose residues. Laminarin sulfate exhibits about 30% of the anticoagulant activity of heparin and is effective therapeutically in the prevention and treatment of cerebrovascular diseases. We characterized the effect of laminarin sulfate on interaction of the heparin-binding angiogenic factor, basic fibroblast growth factor (bFGF), with a naturally produced subendothelial extracellular matrix (ECM) and with cell surface receptor sites. Laminarin sulfate (1-2 m?g/ml) inhibited the binding of bFGF to ECM and to the surface of vascular smooth muscle cells (SMC) in a manner similar to that observed with heparin. Likewise, laminarin sulfate efficiently displaced both ECM-and cell-bound bFGF at concentrations as low as 1 m?g/ml. Both laminarin sulfate and heparin efficiently induced restoration of bFGF receptor binding in xylosyltransferase-deficient CHO cell mutants defective in initiation of glycosaminoglycan synthesis. Moreover, laminarin sulfate elicited bFGF receptor activation and mitogenic response in heparan sulfate(HS)-deficient, cytokine-dependent lymphoid cells. These results indicate that laminarin sulfate effectively replaced the need for heparin and HS in the induction of bFGF receptor binding and signaling. In other experiments, laminarin sulfate was found to inhibit the proliferation of vascular SMC in a manner similar to that observed with heparin. These effects of laminarin sulfate may have potential clinical applications in diverse situations such as wound healing, angiogenesis, and atherosclerosis. © 1995 Wiley-Liss, Inc.  相似文献   

16.
Smooth muscle cell proliferation is regulated through the coordinated action of growth inhibitors and growth factors/mitogens; a specific heparin-epidermal growth factor (EGF) complementation has been proposed (Reilly et al., 1987, J. Cell. Physiol., 131:149-157). In culture, vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) proliferate more rapidly than VSMC from control Wistar Kyoto rats (WKY). We observed that, compared with WKY-derived VSMC, cells from SHR were markedly less susceptible to growth inhibition both by heparin and its homopolysaccharide analogue pentosan polysulphate (PPS). SHR-derived VSMC exhibited a reduced capacity for binding of [3H]heparin to specific extracellular surface receptors, whereas affinities for heparin were comparable between both VSMC isolates. The early (0-2 hr at 37 degrees C) kinetics of internalization did not differ between SHR- and WKY-derived VSMC, but both internalized equivalent proportions (approximately 10%) of initially surface-bound heparin. VSMC from SHR exhibited a greater capacity, without a changed affinity, for [I125]EGF binding than VSMC from WKY. Pre-exposure of VSMC to heparin or PPS decreased, in a time-dependent manner, the EGF binding capacity for both SHR and WKY (by 40-50% after 72 hr). However, in absolute terms, the EGF-binding capacity of VSMC from SHR exposed to heparinoids was similar to that of nonexposed VSMC from WKY.  相似文献   

17.
We investigated the effect of epidermal growth factor (EGF) pretreatment on binding to its own receptor. We found that EGF specifically induces a rapid, reversible, and global change in the affinity of surface EGF receptors. Occupancy of only a few (less than 1%) was sufficient to reduce the affinity of the majority of surface receptors by 10 min and a maximal response required only 5% occupancy. The rate at which EGF receptor affinity decreased was essentially independent of the extent of receptor occupancy and occurred with a t 1/2 between 2-2.5 min. Surface receptors remained in the lower affinity state as long as EGF remained present. Removal of EGF resulted in the restoration of receptor affinity with a t 1/2 of about 20 min. Kinetic analyses revealed that the alteration in apparent affinity was due to changes in both the association and dissociation rate constants as well as an increase in the specific internalization rate of the receptor. Treatment of cells with phorbol esters produced a similar affinity drop, but depletion of intracellular protein kinase C did not affect the affinity change induced by EGF. Thus, phorbol esters and EGF mediate their effects through different pathways. EGF reduced the affinity of its own receptors in a variety of cell types including Chinese hamster ovary cells expressing transfected human EGF receptors. Our observations are consistent with the hypothesis that occupancy of a few receptors on EGF naive cells triggers a global modification/phosphorylation of surface receptors which results in the observed change in affinity. This system is independent of protein kinase C and probably serves to regulate the activity of the EGF receptor.  相似文献   

18.
Fannon M  Forsten KE  Nugent MA 《Biochemistry》2000,39(6):1434-1445
Basic fibroblast growth factor (bFGF) binds to cell surface tyrosine kinase receptor proteins and to heparan sulfate proteoglycans. The interaction of bFGF with heparan sulfate on the cell surface has been demonstrated to impact receptor binding and biological activity. bFGF receptor binding affinity is reduced on cells that do not express heparan sulfate. The addition of soluble heparin or heparan sulfate has been demonstrated to rescue the bFGF receptor binding affinity on heparan sulfate deficient cells yet has also been shown to inhibit binding under some conditions. While the chemical requirements of the heparin-bFGF-receptor interactions have been studied in detail, the possibility that heparin enhances bFGF binding in part by physically associating with the cell surface has not been fully evaluated. In the study presented here, we have investigated the possibility that heparin binding to the cell surface might play a role in modulating bFGF receptor binding and activity. Balb/c3T3 cells were treated with various concentrations of sodium chlorate, so as to express a range of endogenous heparan sulfate sites, and [(125)I]bFGF binding was assessed in the presence of a range of heparin concentrations. Low concentrations of heparin (0.1-30 nM) enhanced bFGF receptor binding to an extent that was inversely proportional to the amount of endogenous heparan sulfate sites present. At high concentrations (10 microM), heparin inhibited bFGF receptor binding in cells under all conditions. The ability of heparin to stimulate and inhibit bFGF-receptor binding correlated with altered bFGF-stimulated tyrosine kinase activity and cell proliferation. Under control and chlorate-treated conditions, [(125) I]heparin was observed to bind with a high affinity to a large number of binding sites on the cells (K(d) = 57 and 50 nM with 3.5 x 10(6) and 3.6 x 10(6) sites/cell for control and chlorate-treated cells, respectively). A mathematical model of this process revealed that the dual functions of heparin in bFGF binding were accurately represented by heparin cell binding-mediated stimulation and soluble heparin-mediated inhibition of bFGF receptor binding.  相似文献   

19.
In investigating the role of cell-extracellular matrix interactions in cell adhesion and growth control, the effects of heparin on cell-collagen interactions were examined. Exponentially growing Balb/c-3T3 fibroblasts were radiolabelled with 3H-thymidine and detached from tissue culture surfaces using EDTA, and cell attachment to various types of collagen substrata was assayed in the presence or absence of heparin or other glycosaminoglycans (GAGs) or dextran sulfate (40 K). Cells attached readily (70-90%) to films of types I and V, but not to type III collagen. The number of cells bound to types I and V collagen films was inhibited by 10-50% when heparin was present from 0.1-100 micrograms/ml. Cell-collagen attachment was also inhibited by dextran sulfate, and to a lesser extent by dermatan sulfate, but chondroitin sulfates A and C and hyaluronic acid showed no effect. Heparin was active even at early time points in the adhesion assay, suggesting it may disrupt cell-collagen attachment. To study the effects of heparin in modulating cell growth on collagen, growth arrested cells cultured on type I collagen films were serum stimulated in the presence of heparin or other GAGs for 3 days. Growth was inhibited (greater than 40%) only by heparin and dextran sulfate. Interaction of heparin fragments (Mr less than or equal to 6KD) with type I collagen was analyzed by affinity co-electrophoresis (Lee and Lander, 1991) and showed higher affinity heparin binding to native as compared with denatured collagen. These data suggest that sites within native collagen may mediate Balb cell-collagen and heparin-collagen interactions, and such interactions may be relevant towards understanding heparin's antiproliferative activity in vivo and in vitro.  相似文献   

20.
Herpes simplex virus type 2 (HSV-2) interacts with cell surface glycosaminoglycans during virus attachment. Glycoprotein B of HSV-2 can potentially mediate the interaction between the virion and cell surface glycosaminoglycans. To determine the specificity, kinetics, and affinity of these interactions, we used plasmon resonance-based biosensor technology to measure HSV-2 glycoprotein binding to glycosaminoglycans in real time. The recombinant soluble ectodomain of HSV-2 gB (gB2) but not the soluble ectodomain of HSV-2 gD bound readily to biosensor surfaces coated with heparin. The affinity constants (Kds) were determined for gB2 (Kd = 7.7 x 10(-7) M) and for gB2 deltaTM (Kd = 9.9 x 10(-7) M), a recombinant soluble form of HSV-2 gB in which only its transmembrane domain has been deleted. gB2 binding to the heparin surface was competitively inhibited by low concentrations of heparin (50% effective dose [ED50] = 0.08 microg/ml). Heparan sulfate and dermatan sulfate glycosaminoglycans have each been suggested as cell surface receptors for HSV. Our biosensor analyses showed that both heparan sulfate and dermatan sulfate inhibited gB2 binding (ED50 = 1 to 5 microg/ml), indicating that gB2 interacts with both heparin-like and dermatan sulfate glycosaminoglycans. Chondroitin sulfate A, in contrast, inhibited gB2 binding to heparin only at high levels (ED50 = 65 microg/ml). The affinity and specificity of gB2 binding to glycosaminoglycans demonstrated in these studies support its role in the initial binding of HSV-2 to cells bearing heparan sulfate or dermatan sulfate glycosaminoglycans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号