首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 5 毫秒
1.
The control of the Ca(2+)-ATPase gene (LCA1) that encodes two different membrane-located isoforms by two antagonic phytohormones, ABA and IAA, has been investigated. Strikingly both the growth regulators induce the LCA1 expression. By using a protoplast transient system, the cis-acting DNA elements responding to both, abiotic stress (ABA) and normal development (IAA), are dissected. ABA triggered a 4-fold increase in the GUS-activity. A single ACGT motif responsible for most of the LCA1 mRNA induction was localized at an unexpectedly large distance (1577 bp) upstream of the translational start. In the case of IAA, although there is a TGTCTC sequence that is known to be an important cis-acting element, two TGA motifs play a more critical role. It is proposed that the Ca(2+)-ATPase isoforms might intervene in the generation of specific Ca(2+) signals by restoring steady-state Ca(2+) levels, modulating both frequency and amplitude of Ca(2+) waves via wave interference.  相似文献   

2.
The timing and magnitude of calcium response are cell-specific in individual beta-cells. This may indicate that the cells have different roles in the intact islet. It is unknown what mechanisms determine these characteristics. We previously found that the mechanisms setting cell-specific response timing are disturbed in beta-cells from hyperglycemic mice and one of the causes is likely to be an altered mitochondrial metabolism. Mitochondria play a key role in the control of nutrient-induced insulin secretion. Here, we used confocal microscopy with the fluorescent probe MitoTracker Red CMXRos and Fluo-3 to study how the amount of active mitochondria is related to the lag-time and the magnitude of calcium response to 20mM glucose in isolated beta-cells and in cells within intact lean and ob/ob mouse islets. Results show that the mitochondrial mass is inversely correlated with the lag-times for calcium response both in lean and ob/ob mouse beta-cells (r=-0.73 and r=-0.43, respectively, P<0.05). Thus, the state of mitochondria may determine the timing of calcium response.  相似文献   

3.
The calpains are a family of cysteine proteases with closely related amino acid sequences, but a wide range of Ca(2+) requirements (K(d)). For m-calpain, K(d) is approximately 325microM, for mu-calpain it is approximately 50microM, and for calpain 3 it is not strictly known but may be approximately 0.1microM. On the basis of previous structure determination of m-calpain we postulated that two regions of the calpain large subunits, the N-terminal peptide (residues 1-20) and a domain III-IV linker peptide (residues 514-530 in m-calpain) were important in defining K(d). The mutations Lys10Thr in the N-terminal peptide, and Glu517Pro in the domain linker peptide, reduced K(d) of m-calpain by 30% and 42%, respectively, revealing that these two regions are functionally important. The increased Ca(2+)-sensitivity of these mutants demonstrate that the Lys10-Asp148 salt link and the short beta-sheet interaction involving Glu517 are factors contributing to the high K(d) of m-calpain. Though these two regions are physically remote from the active site and Ca(2+)-binding site, they play significant roles in regulating the response of calpain to Ca(2+). Differences in these interactions in mu-calpain and in calpain 3 are also consistent with their progressively lower K(d) values.  相似文献   

4.
Calpains are cysteine proteases involved in a number of physiological and pathological processes, yet our knowledge of substrates cleaved in vivo, in intact cells, is scarce. In this work we made an attempt to develop a technique for finding calpain substrates in intact Drosophila Schneider S2 cells. The procedure consists in comparative 2D gelelectrophoresis: three identical samples were treated in different ways: A (control, no addition), B, activated (Ca2+ and ionomycin added), C, inactivated (additions as in B + specific calpain inhibitor). 2D gel pattern were analyzed by densitometry. Spots showing density relation A > B << C were identified by mass spectroscopy. In a typical run, 11 candidate substrates were recognized; out of these, four were randomly selected: all four were verified to be calpain substrates, by digestion of the recombinant protein with recombinant calpain.  相似文献   

5.
Synaptotagmin I has two tandem Ca(2+)-binding C(2) domains, which are essential for fast synchronous synaptic transmission in the central nervous system. We have solved four crystal structures of the C(2)B domain, one of them in the cation-free form at 1.50 A resolution, two in the Ca(2+)-bound form at 1.04 A (two bound Ca(2+) ions) and 1.65 A (three bound Ca(2+) ions) resolution and one in the Sr(2+)-bound form at 1.18 A (one bound Sr(2+) ion) resolution. The side chains of four highly conserved aspartic acids (D303, D309, D363, and D365) and two main chain oxygens (M302:O and Y364:O), together with water molecules, are in direct contact with two bound Ca(2+) ions (sites 1 and 2). At higher Ca(2+) concentrations, the side chain of N333 rotates and cooperates with D309 to generate a third Ca(2+) coordination site (site 3). Divalent cation binding sites 1 and 2 in the C(2)B domain were previously identified from NMR NOE patterns and titration studies, supplemented by site-directed mutation analysis. One difference between the crystal and NMR studies involves D371, which is not involved in coordination with any of the identified Ca(2+) sites in the crystal structures, while it is coordinated to Ca(2+) in site 2 in the NMR structure. In the presence of Sr(2+), which is also capable of triggering exocytosis, but with lower efficiency, only one cation binding site (site 1) was occupied in the crystallographic structure.  相似文献   

6.
7.
The kinetic and steady-state properties of macroscopic mslo Ca-activated K+ currents were studied in excised patches from Xenopus oocytes. In response to voltage steps, the timecourse of both activation and deactivation, but for a brief delay in activation, could be approximated by a single exponential function over a wide range of voltages and internal Ca2+ concentrations ([Ca]i). Activation rates increased with voltage and with [Ca]i, and approached saturation at high [Ca]i. Deactivation rates generally decreased with [Ca]i and voltage, and approached saturation at high [Ca]i. Plots of the macroscopic conductance as a function of voltage (G-V) and the time constant of activation and deactivation shifted leftward along the voltage axis with increasing [Ca]i. G-V relations could be approximated by a Boltzmann function with an equivalent gating charge which ranged between 1.1 and 1.8 e as [Ca]i varied between 0.84 and 1,000 μM. Hill analysis indicates that at least three Ca2+ binding sites can contribute to channel activation. Three lines of evidence indicate that there is at least one voltage-dependent unimolecular conformational change associated with mslo gating that is separate from Ca2+ binding. (a) The position of the mslo G-V relation does not vary logarithmically with [Ca]i. (b) The macroscopic rate constant of activation approaches saturation at high [Ca]i but remains voltage dependent. (c) With strong depolarizations mslo currents can be nearly maximally activated without binding Ca2+. These results can be understood in terms of a channel which must undergo a central voltage-dependent rate limiting conformational change in order to move from closed to open, with rapid Ca2+ binding to both open and closed states modulating this central step.  相似文献   

8.
9.
The regulation of cytosolic Ca2+ has been investigated in growing root-hair cells of Sinapis alba L. with special emphasis on the role of the plasmamembrane Ca2+-ATPase. For this purpose, erythrosin B was used to inhibit the Ca2+-ATPase, and the Ca2+ ionophore A23187 was applied to manipulate cytosolic free [Ca2+] which was then measured with Ca2+-selective microelectrodes. (i) At 0.01 M, A23187 had no effect on the membrane potential but enhanced the Ca2+ permeability of the plasma membrane. Higher concentrations of this ionophore strongly depolarized the cells, also in the presence of cyanide. (ii) Unexpectedly, A23187 first caused a decrease in cytosolic Ca2+ by 0.2 to 0.3 pCa units and a cytosolic acidification by about 0.5 pH units, (iii) The depletion of cytosolic free Ca2+ spontaneously reversed and became an increase, a process which strongly depended on the external Ca2+ concentration, (iv) Upon removal of A23187, the cytosolic free [Ca2+] returned to its steady-state level, a process which was inhibited by erythrosin B. We suggest that the first reaction to the intruding Ca2+ is an activation of Ca2+ transporters (e.g. ATPases at the endoplasmic reticulum and the plasma membrane) which rapidly remove Ca2+ from the cytosol. The two observations that after the addition of A23187, (i) Ca2+ gradients as steep as-600 mV could be maintained and (ii) the cytosolic pH rapidly and immediately decreased without recovery indicate that the Ca2+-exporting plasma-membrane ATPase is physiologically connected to the electrochemical pH gradient, and probably works as an nH+/Ca2+-ATPase. Based on the finding that the Ca2+-ATPase inhibitor erythrosin B had no effect on cytosolic Ca2+, but caused a strong Ca2+ increase after the addion of A23187 we conclude that these cells, at least in the short term, have enough metabolic energy to balance the loss in transport activity caused by inhibition of the primary Ca2+-pump. We further conclude that this ATPase is a major Ca2+ regulator in stress situations where the cytosolic Ca2+ has been shifted from its steady-state level, as may be the case during processes of signal transduction.Abbreviations and Symbols EB erythrosin B - Em membrane potential - pCa negative logarithm of the Ca2+ concentration This work was supported by the Deutche Forschungsgemeinschaft (H.F.) and the Alexander-von-Humboldt-Foundation (A.T.).  相似文献   

10.
Previously it demonstrated that in the absence of Ca2+ entry, evoked secretion occurs neither by membrane depolarization, induction of [Ca2+] i rise, nor by both combined (Ashery, U., Weiss, C., Sela, D., Spira, M. E., and Atlas, D. (1993). Receptors Channels 1:217–220.). These studies designate Ca2+ entry as opposed to [Ca2+] i rise, essential for exocytosis. It led us to propose that the channel acts as the Ca2+ sensor and modulates secretion through a physical and functional contact with the synaptic proteins. This view was supported by protein–protein interactions reconstituted in the Xenopus oocytes expression system and release experiments in pancreatic cells (Barg, S., Ma, X., Elliasson, L., Galvanovskis, J., Gopel, S. O., Obermuller, S., Platzer, J., Renstrom, E., Trus, M., Atlas, D., Streissnig, G., and Rorsman, P. (2001). Biophys. J.; Wiser, O., Bennett, M. K., and Atlas, D. (1996). EMBO J. 15:4100–4110; Wiser, O., Trus, M., Hernandez, A., Renström, E., Barg, S., Rorsman, P., and Atlas, D. (1999). Proc. Natl. Acad. Sci. U.S.A. 96:248–253). The kinetics of Cav1.2 (Lc-type) and Cav2.2 (N-type) Ca2+ channels were modified in oocytes injected with cRNA encoding syntaxin 1A and SNAP-25. Conserved cysteines (Cys271, Cys272) within the syntaxin 1A transmembrane domain are essential. Synaptotagmin I, a vesicle-associated protein, accelerated the activation kinetics indicating Cav2.2 coupling to the vesicle. The unique modifications of Cav1.2 and Cav2.2 kinetics by syntaxin 1A, SNAP-25, and synaptotagmin combined implied excitosome formation, a primed fusion complex of the channel with synaptic proteins. The Cav1.2 cytosolic domain Lc753–893, acted as a dominant negative modulator, competitively inhibiting insulin release of channel-associated vesicles (CAV), the readily releasable pool of vesicles (RRP) in islet cells. A molecular mechanism is offered to explain fast secretion of vesicles tethered to SNAREs-associated Ca2+ channel. The tight arrangement facilitates the propagation of conformational changes induced during depolarization and Ca2+-binding at the channel, to the SNAREs to trigger secretion. The results imply a rapid Ca2+-dependent CAV (RRP) release, initiated by the binding of Ca2+ to the channel, upstream to intracellular Ca2+ sensor thus establishing the Ca2+ channel as the Ca2+ sensor of neurotransmitter release.  相似文献   

11.
12.
Some features of the Ca2+-transport system in mitochondria of the yeast Endomyces magnusii are considered. The Ca2+ uniporter was shown to be specifically activated by low concentrations of physiological modulators such as ADP, NADH, spermine, and Ca2+ itself. The Na+-independent system responsible for Ca2+ release from Ca2+-preloaded yeast mitochondria was characterized. The rate of the Ca2+ release was proportional to the Ca2+ load, insensitive to cyclosporin A and to Na+, inhibited by La3+, TPP+, Pi, and nigericin, while being activated by spermine. We conclude that Ca2+ release from preloaded E. magnusii yeast mitochondria is mediated by a Na+-independent pathway, very similar to that in mitochondria from nonexcitable mammalian tissues. A scheme describing an arrangement of the Ca2+ transport system of yeast mitochondria is proposed.  相似文献   

13.
Cannell and Allen (1984. Biophys. J. 45:913–925) introduced the use of a multi-compartment model to estimate the time course of spread of calcium ions (Ca2+) within a half sarcomere of a frog skeletal muscle fiber activated by an action potential. Under the assumption that the sites of sarcoplasmic reticulum (SR) Ca2+ release are located radially around each myofibril at the Z line, their model calculated the spread of released Ca2+ both along and into the half sarcomere. During diffusion, Ca2+ was assumed to react with metal-binding sites on parvalbumin (a diffusible Ca2+- and Mg2+-binding protein) as well as with fixed sites on troponin. We have developed a similar model, but with several modifications that reflect current knowledge of the myoplasmic environment and SR Ca2+ release. We use a myoplasmic diffusion constant for free Ca2+ that is twofold smaller and an SR Ca2+ release function in response to an action potential that is threefold briefer than used previously. Additionally, our model includes the effects of Ca2+ and Mg2+ binding by adenosine 5′-triphosphate (ATP) and the diffusion of Ca2+-bound ATP (CaATP). Under the assumption that the total myoplasmic concentration of ATP is 8 mM and that the amplitude of SR Ca2+ release is sufficient to drive the peak change in free [Ca2+] (Δ[Ca2+]) to 18 μM (the approximate spatially averaged value that is observed experimentally), our model calculates that (a) the spatially averaged peak increase in [CaATP] is 64 μM; (b) the peak saturation of troponin with Ca2+ is high along the entire thin filament; and (c) the half-width of Δ[Ca2+] is consistent with that observed experimentally. Without ATP, the calculated half-width of spatially averaged Δ[Ca2+] is abnormally brief, and troponin saturation away from the release sites is markedly reduced. We conclude that Ca2+ binding by ATP and diffusion of CaATP make important contributions to the determination of the amplitude and the time course of Δ[Ca2+].  相似文献   

14.
The rise in intracellular Ca2+ mediated by AMPA subtype of glutamate receptors has been implicated in the pathogenesis of motor neuron disease, but the exact route of Ca2+ entry into motor neurons is not clearly known. In the present study, we examined the role of voltage gated calcium channels (VGCCs) in AMPA induced Ca2+ influx and subsequent intracellular signaling events responsible for motor neuron degeneration. AMPA stimulation caused sodium influx in spinal neurons that would depolarize the plasma membrane. The AMPA induced [Ca2+]i rise in motor neurons as well as other spinal neurons was drastically reduced when extracellular sodium was replaced with NMDG, suggesting the involvement of voltage gated calcium channels. AMPA mediated rise in [Ca2+]i was significantly inhibited by L-type VGCC blocker nifedipine, whereas ω-agatoxin-IVA and ω-conotoxin-GVIA, specific blockers of P/Q type and N-type VGCC were not effective. 1-Napthyl-acetyl spermine (NAS), an antagonist of Ca2+ permeable AMPA receptors partially inhibited the AMPA induced [Ca2+]i rise but selectively in motor neurons. Measurement of AMPA induced currents in whole cell voltage clamp mode suggests that a moderate amount of Ca2+ influx occurs through Ca2+ permeable AMPA receptors in a subpopulation of motor neurons. The AMPA induced mitochondrial calcium loading [Ca2+]m, mitochondrial depolarization and neurotoxicity were also significantly reduced in presence of nifedipine. Activation of VGCCs by depolarizing concentration of KCl (30 mM) in extracellular medium increased the [Ca2+]i but no change was observed in mitochondrial Ca2+ and membrane potential. Our results demonstrate that a subpopulation of motor neurons express Ca2+ permeable AMPA receptors, however the larger part of Ca2+ influx occurs through L-type VGCCs subsequent to AMPA receptor activation and consequent mitochondrial dysfunction is the trigger for motor neuron degeneration. Nifedipine is an effective protective agent against AMPA induced mitochondrial stress and degeneration of motor neurons.  相似文献   

15.
Repetitive oscillations in cytoplasmic Ca2+ due to periodic Ca2+ release from the endoplasmic reticulum (ER) drive mammalian embryo development following fertilization. Influx of extracellular Ca2+ to support the refilling of ER stores is required for sustained Ca2+ oscillations, but the mechanisms underlying this Ca2+ influx are controversial. Although store-operated Ca2+ entry (SOCE) is an appealing candidate mechanism, several groups have arrived at contradictory conclusions regarding the importance of SOCE in oocytes and eggs. To definitively address this question, Ca2+ influx was assessed in oocytes and eggs lacking the major components of SOCE, the ER Ca2+ sensor STIM proteins, and the plasma membrane Ca2+ channel ORAI1. We generated oocyte-specific conditional knockout (cKO) mice for Stim1 and Stim2, and also generated Stim1/2 double cKO mice. Females lacking one or both STIM proteins were fertile and their ovulated eggs displayed normal patterns of Ca2+ oscillations following fertilization. In addition, no impairment was observed in ER Ca2+ stores or Ca2+ influx following store depletion. Similar studies were performed on eggs from mice globally lacking ORAI1; no abnormalities were observed. Furthermore, spontaneous Ca2+ influx was normal in oocytes from Stim1/2 cKO and ORAI1-null mice. Finally, we tested if TRPM7-like channels could support spontaneous Ca2+ influx, and found that it was largely prevented by NS8593, a TRPM7-specific inhibitor. Fertilization-induced Ca2+ oscillations were also impaired by NS8593. Combined, these data robustly show that SOCE is not required to support appropriate Ca2+ signaling in mouse oocytes and eggs, and that TRPM7-like channels may contribute to Ca2+ influx that was previously attributed to SOCE.  相似文献   

16.
Hedgehog (Hh) proteins are secreted molecules that play an essential role in development and tumorigenesis. In Drosophila cultured cells, phosphorylation of the kinesin-like Costal2 (Cos2) protein at Ser572 is triggered by the kinase fused (Fu) upon Hh pathway activation. Here, we validate the first phospho-antibody for one of the Hh pathway components, Cos2, as a universal in situ readout of Hh signal transduction. For the first time, this tool allows the visualisation of a gradient of signalling activity and therefore the range of the activating Hh ligand in different tissues. We also show that, in vivo, Fu kinase is activated by and necessary to transduce all levels of intracellular Hh signalling. Our study fills a gap in the understanding of the Hh pathway by showing that the molecular cascade leading to Cos2 phosphorylation is conserved in all cells activated by Hh. Therefore, we propose that the extracellular Hh information is conveyed to an intracellular signal through graded Fu kinase activity.  相似文献   

17.
In Drosophila photoreceptors the transient receptor potential-like (TRPL), but not the TRP channels undergo light-dependent translocation between the rhabdomere and cell body. Here we studied which of the TRPL channel segments are essential for translocation and why the TRP channels are required for inducing TRPL translocation. We generated transgenic flies expressing chimeric TRP and TRPL proteins that formed functional light-activated channels. Translocation was induced only in chimera containing both the N- and C-terminal segments of TRPL. Using an inactive trp mutation and overexpressing the Na(+)/Ca(2+) exchanger revealed that the essential function of the TRP channels in TRPL translocation is to enhance Ca(2+)-influx. These results indicate that motifs present at both the N and C termini as well as sustained Ca(2+) entry are required for proper channel translocation.  相似文献   

18.
Ca2+ dependency of calpain 3 (p94) activation   总被引:3,自引:0,他引:3  
Calpain 3, commonly called p94 in the literature, is the abundant skeletal muscle-specific calpain that is genetically linked to limb girdle muscular dystrophy type 2A. Recently, we showed that p94's insertion sequence 1 (IS1) is a propeptide that must be autoproteolytically cleaved to provide access of substrates and inhibitors to the enzyme's active site. Removal of IS1 from the core of p94 by recombinant methods produced a fully active enzyme. Here we have resolved the discrepancies in the literature about the Ca(2+) requirement of p94 using the protease core. Even at substoichiometric levels of Ca(2+), and in competition with EDTA, autoproteolyzed enzyme slowly accumulated. Because the initial autoproteolytic cleavage is an intramolecular reaction, transient binding of two Ca(2+) ions to the core would be sufficient to promote the reaction that is facilitated by having the scissile peptide lying close to the active site cysteine. The second autolytic cleavage was much slower and required higher Ca(2+) levels, consistent with it being an intermolecular reaction. Other metal ions such as Na(+), K(+), and Mg(2+) cannot substitute for Ca(2+) in catalyzing the intramolecular autoproteolysis of the p94 core or in the subsequent hydrolysis of exogenous substrates. These metal ions increase moderately the activity of this enzyme but only at very high concentrations. Thus, the proteolytic activity of the core of p94 and its deletion mutant lacking NS and IS1 was shown to be strictly Ca(2+)-dependent. We propose a two-stage model of activation of the proteolytic core of p94.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号