首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yeast artificial chromosomes (YACs) spanning the centromeric region of the human Y chromosome were introduced into mouse LA-9 cells by spheroplast fusion in order to determine whether they would form mammalian artificial chromosomes. In about 50% of the cell lines generated, the YAC DNA was associated with circular extrachromosomal structures. These episomes were only present in a proportion of the cells, usually at high copy number, and were lost rapidly in the absence of selection. These observations suggest that, despite the presence of centromeric sequences, the structures were not segregating efficiently and thus were not forming artificial chromosomes. However, extrachromosomal structures containing alphoid DNA appeared cytogenetically smaller than those lacking it, as long as yeast DNA was also absent. This suggests that alphoid DNA can generate the condensed chromatin structure at the centromere. Edited by: H. F. Willard  相似文献   

2.
3.
Kaposi's sarcoma (KS)-associated herpesvirus (KSHV) (also known as human herpesvirus 8) latently infects KS tumors, primary effusion lymphomas (PELs), and PEL cell lines. In latently infected cells, KSHV DNA is maintained as circularized, extrachromosomal episomes. To persist in proliferating cells, KSHV episomes must replicate and efficiently segregate to progeny nuclei. In uninfected B-lymphoblastoid cells, KSHV latency-associated nuclear antigen (LANA1) is necessary and sufficient for persistence of artificial episomes containing specific KSHV DNA. In previous work, the cis-acting sequence required for episome persistence contained KSHV terminal-repeat (TR) DNA and unique KSHV sequence. We now show that cis-acting KSHV TR DNA is necessary and sufficient for LANA1-mediated episome persistence. Furthermore, LANA1 binds TR DNA in mobility shift assays and a 20-nucleotide LANA1 binding sequence has been identified. Since LANA1 colocalizes with KSHV episomes along metaphase chromosomes, these results are consistent with a model in which LANA1 may bridge TR DNA to chromosomes during mitosis to efficiently segregate KSHV episomes to progeny nuclei.  相似文献   

4.
The chromosomes of the giant dorsal foot-pad cells of Tricholioproctia impatiens produce numerous extrachromosomal bodies which consist of a central spherical core of DNA surrounded by a ribonucleoprotein layer. The bodies are either free within the nucleoplasm or attached by thin threads of chromatin to chromosomal bands. The DNA content and the volume of DNA of unattached spherules fell into distinct classes in a regular geometric progression.  相似文献   

5.
M V Glazkov 《Genetika》1986,22(10):2430-2438
Amplification structures have been found in preparations of histone-depleted somatic (liver) and sex (spermatogonia, spermatocytes 1) rat cells. Multi-forked chromosomal (2-4 replicative forks originating from a single strand of DNA) and extrachromosomal circular amplification structures have been detected in the nuclei of sex cells. All the circular molecules of DNA detected belong, according to size, to the class of small nuclear polydispersed circular DNAs. Chromosomal amplification structures (eye-in-eye or several replicative forks originating from one DNA strand) have been only detected in the nuclei of somatic cells.  相似文献   

6.
Mitotic chromosomes are essential structures for the faithful transmission of duplicated genomic DNA into two daughter cells during cell division. Although more than 100 years have passed since chromosomes were first observed, it remains unclear how a long string of genomic DNA is packaged into compact mitotic chromosomes. Although the classical view is that human chromosomes consist of radial 30 nm chromatin loops that are somehow tethered centrally by scaffold proteins, called condensins, cryo-electron microscopy observation of frozen hydrated native chromosomes reveals a homogeneous, grainy texture and neither higher-order nor periodic structures including 30 nm chromatin fibres were observed. As a compromise to fill this huge gap, we propose a model in which the radial chromatin loop structures in the classic view are folded irregularly toward the chromosome centre with the increase in intracellular cations during mitosis. Consequently, compact native chromosomes are made up primarily of irregular chromatin networks cross-linked by self-assembled condensins forming the chromosome scaffold.  相似文献   

7.
The presence of double minute chromosomes (dmin) in cancer cells is known to be correlated with gene amplifications. In human high grade astrocytomas or glioblastomas, about 50% of cytogenetically characterized cases display dmin. G5 is a cell line which has been established from a human glioblastoma containing multiple dmin. In order to identify the DNA content of these dmin, three techniques were successively used: conventional cytogenetic analysis, comparative genomic hybridization (CGH), and fluorescent in situ hybridization (FISH). The karyotype of G5 cells showed numerical chromosome changes (hypertriploidy), several marker chromosomes, and multiple dmin. CGH experiments detected two strong DNA amplification areas located in 9p21-22 and 9p24, as well as an underrepresentation of chromosomes 6, 10, 11, 13, 14, and 18q. By using FISH with a chromosome 9-specific painting probe to metaphase chromosomes of the G5 cell line, dmin were shown to contain DNA sequences originating from chromosome 9. This study demonstrates the usefulness of a combination of classical karyotyping, CGH, and FISH to identify the chromosomal origin of amplified DNA sequences in dmin. Received: 30 October 1994 / Revised: 25 February 1996  相似文献   

8.
Maintenance of Kaposi's sarcoma-associated herpesvirus (KSHV) latent infection depends on the viral episomes in the nucleus being distributed to daughter cells following cell division. The latency-associated nuclear antigen (LANA) is constitutively expressed in all KSHV-infected cells. LANA binds sequences in the terminal repeat regions of the KSHV genome and tethers the viral episomes to chromosomes. To better understand the mechanism of chromosomal tethering, we performed glutathione S-transferase (GST) affinity and yeast two-hybrid assays to identify LANA-interacting proteins with known chromosomal association. Two of the interactors were the methyl CpG binding protein MeCP2 and the 43-kDa protein DEK. The interactions of MeCP2 and DEK with LANA were confirmed by coimmunoprecipitation. The MeCP2-interacting domain was mapped to the previously described chromatin binding site in the N terminus of LANA, while the DEK-interacting domain mapped to LANA amino acids 986 to 1043 in the C terminus. LANA was unable to associate with mouse chromosomes in chromosome spreads of transfected NIH 3T3 cells. However, LANA was capable of targeting to mouse chromosomes in the presence of human MeCP2 or DEK. The data indicate that LANA is tethered to chromosomes through two independent chromatin binding domains that interact with different protein partners.  相似文献   

9.
The class of nonhistone chromosomal proteins that remains bound to DNA in chromatin in the presence of 2.5 M NaCl-5 M urea has proven refractile to biochemical analysis. In order to study its role in chromatin organization, we have produced monoclonal antibodies that are specific for the HeLa DNA-protein complex that remains after extraction of chromatin with high salt and urea. The antibody-producing clones were identified with an ELISA assay. Of the six clones selected, five were stabilized by limiting dilution. All clones are IgG producers. None cross-react significantly with native DNA, core histones, or the high-mobility group nonhistone proteins. All antibodies are specific for nuclear or juxtanuclear antigens. Indirect immunofluorescence shows that three antibodies, which are nonidentical, stain three different nuclear networks. Available evidence indicates that two of these networks are the nuclear matrix. A fourth antibody reveals structures reminiscent of chromocenters. A fifth antibody, AhNA-1, binds to interphase HeLa chromatin and specifically decorates metaphase chromosomes. AhNA-1 similarly recognizes rat chromosomes. Each of these monoclonal antibodies also reveals a changing pattern of nuclear staining as cells progress through the cell cycle. Presumably, this reflects the rearrangement of the cognate antigens.  相似文献   

10.
Chromosomal destabilization during gene amplification.   总被引:12,自引:6,他引:6       下载免费PDF全文
Acentric extrachromosomal elements, such as submicroscopic autonomously replicating circular molecules (episomes) and double minute chromosomes, are common early, and in some cases initial, intermediates of gene amplification in many drug-resistant and tumor cell lines. In order to gain a more complete understanding of the amplification process, we investigated the molecular mechanisms by which such extrachromosomal elements are generated and we traced the fate of these amplification intermediates over time. The model system consists of a Chinese hamster cell line (L46) created by gene transfer in which the initial amplification product was shown previously to be an unstable extrachromosomal element containing an inverted duplication spanning more than 160 kilobases (J. C. Ruiz and G. M. Wahl, Mol. Cell. Biol. 8:4302-4313, 1988). In this study, we show that these molecules were formed by a process involving chromosomal deletion. Fluorescence in situ hybridization was performed at multiple time points on cells with amplified sequences. These studies reveal that the extrachromosomal molecules rapidly integrate into chromosomes, often near or at telomeres, and once integrated, the amplified sequences are themselves unstable. These data provide a molecular and cytogenetic chronology for gene amplification in this model system; an early event involves deletion to generate extrachromosomal elements, and subsequent integration of these elements precipitates a cascade of chromosome instability.  相似文献   

11.
Gene amplification in human tumor cells is frequently mediated by extrachromosomal elements (e.g., double minute chromosomes [DMs]). Recent experiments have shown that DMs can be formed from smaller, submicroscopic circular precursors referred to as episomes (S. M. Carroll, M. L. DeRose, P. Gaudray, C. M. Moore, D. R. Needham-Vandevanter, D. D. Von Hoff and G. M. Wahl, Mol. Biol. 8:1525-1533, 1988). To investigate whether episomes are generally involved as intermediates in gene amplification, we determined whether they mediate the amplification of the mdr1 gene, which when overexpressed engenders cross resistance to multiple lipophilic drugs. A variety of methods including electrophoresis of undigested DNAs in high-voltage gradients, NotI digestion, and production of double-strand breaks by gamma irradiation were used to distinguish between mdr1 sequences amplified on submicroscopic circular molecules and those amplified within DMs or chromosomal DNA. The gamma-irradiation procedure provides a new method for detecting and determining the size of circular molecules from 50 kilobases (kb) to greater than 1,000 kb. These methods revealed that some of the amplified mdr1 genes in vinblastine-resistant KB-V1 cells are contained in supercoiled circular molecules of approximately 600 and approximately 750 kb. Analysis of the replication of these molecules by a Meselson-Stahl density shift experiment demonstrated that they replicate approximately once in a cell cycle. The data lend further support to a model for gene amplification in which DMs are generally formed from smaller, autonomously replicating precursors.  相似文献   

12.
We have investigated the presence of higher-order chromatin structures in different maize tissues. Taking advantage of the pulsed-field gel electrophoresis technique to analyse large DNA fragments from intact nuclei and cells, we have determined the size distribution of the high-molecular-weight DNA fragments obtained from chromatin degradation by endogenous nucleases in isolated nuclei. Chromatin digestion leads to the appearance of stable DNA fragments of about 50 kb in all the tissues examined, suggesting the folding of DNA in higher-order chromatin domain structures. It has been reported that such chromatin domains are formed by loops of the 30 nm fibres anchored to the nuclear matrix by a complex set of proteins, including DNA topoisomerase II. Treatment of maize protoplasts with the calcium ionophore A23187 and the antitumour drug VM-26, which specifically inhibit the religation of the cleaved DNA in the topoisomerase II reaction, also produces the 50 kb structure. Analysis of the DNA contained in the 50 kb chromatin structure shows a higher degree of methylation than in bulk maize chromosomal DNA. The role of methylated DNA in the chromatin folding is discussed.  相似文献   

13.
Gene amplification is frequently mediated by the initial production of acentric, autonomously replicating extrachromosomal elements. The 4,000 extrachromosomal copies of the mouse adenosine deaminase (ADA) amplicon in B-1/50 cells initiate their replication remarkably synchronously in early S phase and at approximately the same time as the single-copy chromosomal locus from which they were derived. The abundance of ADA sequences and favorable replication timing characteristics in this system led us to determine whether DNA replication initiates in ADA episomes within a preferred region and whether this region is the same as that used at the corresponding chromosomal locus prior to amplification. This study reports the detection and localization of a discrete set of DNA fragments in the ADA amplicon which label soon after release of synchronized B-1/50 cells into S phase. A switch in template strand complementarity of Okazaki fragments, indicative of the initiation of bidirectional DNA replication, was found to lie within the same region. This putative replication origin is located approximately 28.5 kbp upstream of the 5' end of the ADA gene. The same region initiated DNA replication in the single-copy ADA locus of the parental cells. These analyses provide the first evidence that the replication of episomal intermediates involved in gene amplification initiates within a preferred region and that the same region is used to initiate DNA synthesis within the native locus.  相似文献   

14.
Recent experiments have shown that gene amplification can be mediated by submicroscopic, autonomously replicating, circular extrachromosomal molecules. We refer to those molecules as episomes (S. Carroll, P. Gaudray, M. L. DeRose, J. F. Emery, J. L. Meinkoth, E. Nakkim, M. Subler, D. D. Von Hoff, and G. M. Wahl, Mol. Cell. Biol. 7:1740-1750, 1987). The experiments reported in this paper explore the way episomes are formed and their fate in the cell over time. The data reveal that in our system the episomes are initially 250 kilobases, but gradually enlarge until they become double minute chromosomes. In addition, we show that episomes or double minute chromosomes can integrate into chromosomes. Our results also suggest that episomes can be produced by deletion of the corresponding sequences from the chromosome.  相似文献   

15.
Epstein-Barr virus (EBV) establishes a life-long latent infection in humans. In proliferating latently infected cells, EBV genomes persist as multiple episomes that undergo one DNA replication event per cell cycle and remain attached to the mitotic chromosomes. EBV nuclear antigen 1 (EBNA-1) binding to the episome and cellular genome is essential to ensure proper episome replication and segregation. However, the nature and regulation of EBNA-1 interaction with chromatin has not been clearly elucidated. This activity has been suggested to involve EBNA-1 binding to DNA, duplex RNA, and/or proteins. EBNA-1 binding protein 2 (EBP2), a nucleolar protein, has been proposed to act as a docking protein for EBNA-1 on mitotic chromosomes. However, there is no direct evidence thus far for EBP2 being associated with EBNA-1 during mitosis. By combining video microscopy and Förster resonance energy transfer (FRET) microscopy, we demonstrate here for the first time that EBNA-1 and EBP2 interact in the nucleoplasm, as well as in the nucleoli during interphase. However, in strong contrast to the current proposed model, we were unable to observe any interaction between EBNA-1 and EBP2 on mitotic chromosomes. We also performed a yeast double-hybrid screening, followed by a FRET analysis, that led us to identify HMGB2 (high-mobility group box 2), a well-known chromatin component, as a new partner for EBNA-1 on chromatin during interphase and mitosis. Although the depletion of HMGB2 partly altered EBNA-1 association with chromatin in HeLa cells during interphase and mitosis, it did not significantly impact the maintenance of EBV episomes in Raji cells.  相似文献   

16.
17.
Nuclear extrachromosomal DNA elements have been identified in several kinetoplastids such as Leishmania and Trypanosoma cruzi, but never in Trypanosoma brucei. They can occur naturally or arise spontaneously as the result of sublethal drug exposure of parasites. In most cases, they are represented as circular elements and are mitotically unstable. In this study we describe the presence of circular DNA in the nucleus of Trypanosoma brucei. This novel type of DNA was termed NR-element (NlaIII repeat element). In contrast to drug-induced episomes in other kinetoplastids, the T. brucei extrachromosomal NR-element is not generated by drug selection. Furthermore, the element is stable during mitosis over many generations. Restriction analysis of tagged NR-element DNA, unusual migration patterns during pulsed field gel electrophoresis (PFGE) and CsCl/ethidium bromide equilibrium centrifugation demonstrates that the NR-element represents circular DNA. Whereas it has been found in all field isolates of the parasites we analysed, it is not detectable in some laboratory strains notably the genome reference strain 927. The DNA sequence of this element is related to a 29 bp repeat present in the subtelomeric region of VSG-bearing chromosomes of T. brucei. It has been suggested that this subtelomeric region is part of a transition zone on chromosomes separating the relatively stable telomeric repeats from the recombinationaly active region downstream of VSG genes. Therefore, we discuss a functional connection between the occurrence of this circular DNA and subtelomeric recombination events in T. brucei.  相似文献   

18.
In the present paper the interaction of metaphase chromosomes and chromatin with model and natural lipid membranes was studied. It was shown that chromatin and chromosomes are able to form complexes with membranes in the presence of divalent cations. In such complexes, the typical structure of chromosomes is altered. The character of this alteration in chromosomal structure was investigated with the use of electron microscopy and chemical modification with dimethylsulphate (DMS). The latter is possible because, according to the presented data, the condensation of chromatin into chromosomes is associated with a decrease in accessibility of N-3 in adenine (the protection of the minor groove of DNA) to modifications, and with an increased methylation of N-1 in adenine (the disarrangement of the secondary structure of DNA). It was shown that the interaction of chromosomes with liposomes provides various levels of unfolding up to the appearance of chromatin-like structures. The secondary DNA structure of decondensed chromosomes coincides with the secondary structure of chromosomal but not chromatin DNA, whereas the extent of shielding of the minor groove of DNA in such decondensed structures typical for chromatin DNA. It is possible to suggest that the chromosomal decondensation in telophase of mitosis is initiated by the action of a membrane component of the developing nuclear envelope.  相似文献   

19.
20.
The distinguishable morphologic features of nuclei of acute myelogenous leukemia cells with enlarged size and finely distributed nuclear chromatin indicate incomplete chromosome condensation that can be related to elevated gene expression. To confirm this, interphase chromosome structures were studied in exponentially growing rat myelomonocytic leukemia 1 cells isolated at the University of Debrecen (My1/De cells). This cell line was established from primary rat leukemia chemically induced by 7,12-dimethylbenz[a]anthracene treatment. The enlarged nuclei of My1/De cells allowed improved fluorescent visualization of chromosomal structures. Increased resolution revealed major interphase intermediates consisting of (1) veil-like chromatin, (2) chromatin ribbon, (3) chromatin funnel, (4) chromatin bodies, (5) elongated prechromosomes, (6) seal-ring, spiral shaped, and circular chromosomal subunits, (7) elongated, bent, u- and v-shaped prechromosomes, and (8) metaphase chromosomes. Results confirmed the existence of the chromatin funnel, the first visible interphase chromosome generated by the supercoiling of the chromatin ribbon. Other intermediates not seen previously included the spiral subunits that are involved in the chromonemic folding of metaphase chromosomes. The existence of spiral subunits favors the helical coil model of chromosome condensation. Incomplete chromatin condensation in leukemia cells throughout the cell cycle is an indication of euchromatization contributing to enhanced gene expression and is regarded as a leukemic factor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号