首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of regional intra-arterial injections of substance P (SP) or efferent electrical stimulation of the vagal nerves on feline extrahepatic biliary motility were studied in anesthetized cats using a constant perfusion model. Each of these procedures elicited contractile motor responses of the gallbladder and the sphincter of Oddi. Since SP is present in feline vagal axons, these findings may indicate a role of SP in the vagal motor control of biliary motility. Immunocytochemically neurons with SP-like immunoreactivity were found in the smooth muscle layers of the biliary tree as well as adjacent to acetylcholinesterase-positive ganglion cells indicating either direct activation of smooth muscle cells and/or indirect activation via cholinergic neurons. Depending on the type of stimulation different SP mechanisms were demonstrated; exogenous SP induced contraction of both the sphincter and the gallbladder which were probably direct (resistant to atropine but sensitive to a SP analogue), while vagal stimulation elicited contraction of both regions via a mechanism sensitive to atropine and to a SP analogue.  相似文献   

2.
The gross anatomy of the liver, extrapetatic biliary tree, sphincter of Oddi, and pancreas in the black-tailed prairie dog (Cynomys ludovicianus), a widely used animal model for investigations into biliary physiology, pathophysiology, and pathology, was studied in 10 animals. The liver consists of 4 lobes, the left lateral, median, right lateral, and caudate. The gallbladder lies on the ventral surface of the right lobule of the median lobe. The cystic and hepatic ducts unite to form the common bile duct which enters the duodenum approximately 5 mm distal to the pylorus. The lower end of the common duct dilates forming an ampulla which is surrounded proximally by a band of circular muscle fibres which constitute the choledochal sphincter. The pancreatic duct opens separately into the duodenum approximately 80 mm from the pylorus. Earlier physiologic studies have demonstrated that the choledochal sphincter has intrinsic motility distinct from the duodenum.  相似文献   

3.
A novel type of interstitial tissue cells in the biliary tree termed telocytes (TCs), formerly known as interstitial Cajal‐like cells (ICLCs), exhibits very particular features which unequivocally distinguish these cells from interstitial cells of Cajal (ICCs) and other interstitial cell types. Current research substantiates the existence of TCs and ICCs in the biliary system (gallbladder, extrahepatic bile duct, cystic duct, common bile duct and sphincter of Oddi). Here, we review the distribution, morphology and ultrastructure of TCs and ICCs in the biliary tree, with emphasis on their presumptive roles in physiological and pathophysiological processes.  相似文献   

4.
Do motilin and pancreatic polypeptide regulate duodenal bile acid delivery?   总被引:1,自引:0,他引:1  
The plasma levels of the enteric hormones, motilin and pancreatic polypeptide, cycle in association with fasting intestinal motility and are altered by feeding. Intravenous administration of motilin causes gallbladder contraction and increased sphincter of Oddi phasic motor activity, whereas pancreatic polypeptide causes gallbladder relaxation. To determine if endogenous plasma levels of motilin and pancreatic polypeptide control sphincter of Oddi and gallbladder motility, and regulate duodenal bile acid delivery, we measured during fasting and after feeding the correlation between (a) changes in plasma motilin or pancreatic polypeptide, and (b) the duodenal delivery of a steady-state hepatic output of radiolabelled bile acid. Four dogs were prepared with duodenal cannulas. Duodenal motility was recorded manometrically. Plasma levels of pancreatic polypeptide and motilin were determined during a full cycle of the migrating myoelectric complex for 20 min before and 40 min after ingestion of a standard meal. To assess the effect of the sphincter of Oddi and the gallbladder together, or the gallbladder alone on duodenal bile acid delivery, the dogs received a continuous i.v. infusion of [14C]taurocholic acid (TCA); duodenal delivery of TCA was quantitated with the sphincter of Oddi intact using duodenal marker perfusion, or with the sphincter of Oddi cannulated and zero outflow resistance. In the interdigestive period with the sphincter of Oddi intact, only 0.1 (r2) of the variance of duodenal bile acid delivery can be predicted from the variance of motilin, and the correlation of plasma pancreatic polypeptide with duodenal TCA delivery is opposite that expected if pancreatic polypeptide caused gallbladder relaxation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Cholecystokinin (CCK) is considered to simply contract the gallbladder and relax the sphincter of Oddi with meals. In this study, we examined this hypothesis by investigating the action of CCK on the sphincter of Oddi and gallbladder of the guinea pig. The experimental design used an in vitro preparation of the sphincter of Oddi to measure contraction of the circular muscle. CCK increased tone in both the gallbladder and the sphincter of Oddi in a concentration-dependent manner. The normalized concentration-response curves for CCK, however, revealed that the gallbladder had a greater sensitivity to CCK (ED50 7 nM) than the sphincter of Oddi (ED50 22 nM; p < 0.01). Conversely, the sphincter was more sensitive to bethanechol than was the gallbladder. When the sphincter of Oddi was stimulated maximally with CCK in the presence of atropine (10(-6) M) or tetrodotoxin (10(-6) M), the contractile response was significantly reduced (p < 0.05) although not abolished. Conversely, atropine completely abolished the responses to bethanechol (10(-3) M) and transmural field stimulation (70 V, 10 Hz, 1 ms, for 20 s). Transmural field stimulation of the sphincter that had been precontracted with CCK (26 nM) caused a transient, initial relaxation followed by contraction. Pretreatment with atropine augmented the duration of this relaxation, which could be completely abolished by tetrodotoxin. Thus, CCK contracts the sphincter of Oddi in the guinea pig by a direct (myogenic) and a neural (likely cholinergic) mechanism. Relaxation of the sphincter of Oddi also occurs in the guinea pig via noncholinergic inhibitory nerves.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Summary Light-microscopic immunohistochemistry was used to localize insulin- and somatostatin-immunoreactive cells within developing endocrine pancreatic tissue of metamorphosing lampreys, Petromyzon marinus. The extrahepatic common bile duct and a portion of the intrahepatic bile duct develop into the caudal portion of the endocrine pancreas. The cranial pancreas is composed of follicles originating in the intestinal and diverticular epithelia, thus following the method of formation of pancreatic follicles from gut epithelium in larvae. In both the cranial and caudal portions, and in an intermediate cord of isolated follicles which connect these two major masses, insulin-immunoreactive cells appear first and are followed by cells showing somatostatin-immunoreactivity. In all stages of metamorphosis individual endocrine cells demonstrate immunoreactivity to a single hormone. Biliary atresia in lamprey may have some adaptive significance in providing cells that produce a caudal endocrine pancreas.Supported by NSERC of Canada grant No. A5945 and MRC of Canada grant No. MA8629 to JHY  相似文献   

7.
The ultrastructure and acetylcholinesterase activity of the intrinsic innervation of the sphincter of Oddi of eight adult dogs was studied by electron microscopy. A rich distribution of unmyelinated axons embedded individually or as groups within Schwann cell cytoplasm ("innervation fasciculee"), is to be observed. A few myelinated fibres were also observed. Many of the axons are acetylcholinesterase-positive. Three main types of nerve terminals are distinguished according to their vesicle populations. Individual nerve cells or small groups of nerve cells were scattered between the smooth muscle bundles and in the lamina glandularis mucosae. The cytoplasm of some neurons contains many electron dense spherical bodies resembling "myeloid bodies", and many lysosomes. Nerve terminals synapse onto both neuronal perikarya and their dendrites. Within the nerve fascicles, close appositions between the terminals occur frequently probably representing the most peripheral inter-neuronal integrative link in the neural regulation of the function of the sphincter of Oddi. -- The gap between nerve terminals and smooth muscle cells usually measures several thousands of A. Closer appositions are seldom seen, and no synaptic complexes can be observed.  相似文献   

8.
A study of the relationship between bile secretion and nutrition in the pig requires a complete and continuous collection of the bile and its reinfusion to the animal. In most of the studies performed in different species, bile has been directly reinfused into the duodenum, leading to the exclusion of the sphincter of Oddi from the biliary pathway. It has been postulated that such an exclusion could inhibit gallbladder emptying. The aim of the present work was to study postprandial gallbladder emptying in the pig, depending on the site of bile reinfusion, i.e. the duodenum or the lower bile duct. The gallbladder bile was coloured with indocyanine green (ICG) and marker secretion was recorded after a test-meal. The results showed that after meal intake, the gallbladder emptied over a similar period of time and according to similar kinetics, whatever the site of bile reinfusion.  相似文献   

9.
Summary The distribution pattern of adrenergic fibres innervating the ocular choroid membrane of the chicken was studied by means of fluorescence and electron microscopy. In addition, the origin of these fibres was investigated after superior cervical ganglionectomy. Adrenergic axons reach the choroid, partly forming the perivascular plexuses and partly running in the choroid nerves and the choroidal branches of the ciliary nerves. The axon terminals distribute to the smooth muscle cells of the arterial wall and to the extensive system of smooth muscle cells of the intervascular stroma. After unilateral ganglionectomy, fluorescent fibres almost completely disappeared, and degenerative changes could be observed in the terminal varicosities on both smooth muscle cell populations. These findings suggest that the adrenergic axons either originate from neurones within the ipsilateral superior cervical ganglion, or pass through this ganglion. The persistence of normal terminals in short- and long-term ganglionectomised animals shows that the vasal and intervascular muscle cells of the choroid membrane are provided with both an adrenergic and a cholinergic innervation.This work was supported by grant No 80.00442.04 from the Italian National Research Council (CNR)  相似文献   

10.
We have investigated the mechanism by which morphine contracts hog bile duct and sphincter of Oddi. Morphine contraction is antagonized by naloxone, competitively on the sphincter, noncompetitively on the bile duct. Diphenhydramine at low concentration (3.4 X 10(-6)M) also antagonizes both actions of morphine. Histamine has a very potent contracting action on the sphincter and bile duct and this is antagonized by diphenhydramine. Burimamide only weakly antagonizes the actions of morphine or histamine. Compound 48/80 causes a pronounced contraction of sphincter and bile duct following which morphine effects are greatly attenuated. These results suggest that morphine-induced contraction of the sphincter of Oddi and bile duct is mediated by a two step reaction involving interaction with a specific opiate receptor leading to the release of histamine which combines with an H1 receptor to produce the effect.  相似文献   

11.
Summary Morphological features of the endocrine cells in the duct system of the pancreas and the biliary tract have been recently characterized in the adult animal with respect to their physiological roles. In the present study, we have investigated their chronological appearance as well as their developmental progress at various stages of the rat fetal and postnatal life. On day 12 of gestation, glucagon and insulin, as well as CCK cells, were identified in the pancreatic primordium. On day 14, glucagon and CCK cells were first detected in the epithelial lining of the common hepatic and the hepatic ducts. These cells remained the dominant endocrine type in the duct system during the fetal period. Insulin and pancreatic polypeptide cells were first observed in the common hepatic duct only on days 16 and 18 of gestation respectively. In spite of their presence in the islets, somatostatin cells were not detected in the duct system during fetal life. They started to appear in the accessory pancreatic duct of the neonate, and subsequently in the common hepatic duct as well as in the small pancreatic ones on day 7 after birth. During postnatal development, the endocrine cells showed progressive or retrogressive changes in different portions of the duct system according to the cell type. In general, somatostatin, CCK and pancreatic polypeptide cells showed an increase, while glucagon and insulin cells gradually dwindled in number up to the adult stage. Somatostatin cells exhibited a significant increase in number, becoming the highest population among the duct endocrine cells in the adult. Throughout the developmental progress, the endocrine cells appear to be allocated in regions relevant to their possible influence modulating the exocrine secretion as well as the drainage of the pancreatic and bile fluid. To whom correspondence should be address.  相似文献   

12.
Summary The localization of catecholamines has been investigated in the extrahepatic biliary duct system of cats, guinea-pigs and rhesus monkeys. In fluorimetric determinations noradrenaline was found to be the main primary catecholamine present in the biliary tract of rhesus monkeys. There exist regional differences in the noradrenaline content: Fairly low amounts were detected in the lower fundus of the gall-bladder (0.28 g/g). Increasing concentrations were measured in the corpus vesicae felleae (0.35 g/g), reaching a maximum level in the collum vesicae (0.49 g/g) and the ductus cysticus (0.50 g/g). The noradrenaline content of the choledochus and the choledocho-duodenal junction including Oddi's sphincter was much lower: 0,27 and 0,25 g/g respectively. The noradrenaline level in the small intestine of the rhesus monkey amounted to less than half the concentration found in the biliary ducts. Neither dopamine nor adrenaline have been detected. Fluorescence microscopical analysis reveals the presence of adrenergic nerves in the bile ducts which correspond to the measured noradrenaline concentrations: All parts of the biliary duct system in the different species investigated contain an elaborate perivascular adventitial plexus and adrenergic fibres confined to adventitial non-adrenergic ganglia. In guinea-pigs adrenergically innervated ganglia extend into the smooth muscle layer. The smooth muscle layer of the gall-bladder and the terminal choledochus in cats and rhesus monkeys is penetrated by a wide-meshed adrenergic ground plexus. This plexus was absent in guinea-pigs. The smooth musculature of the sphincter Oddi lacks a specialized adrenergic nerve supply in all species investigated. Finally, bound to the arterial vascular bed inside the propria in all parts of the biliary tract from all species investigated a prominent perivascular plexus is present. It is concluded that the smooth musculature of the gall-bladder and the terminal choledochus (the sphincter region excluded) in cats and monkeys receives 1. a direct sympathetic noradrenergic inhibitory innervation and 2. an indirect sympathetic noradrenergic inhibitory innervation which acts on intrinsic excitatory neurons and is present in all species investigated. The functional significance of the direct and indirect inhibitory innervation to the smooth musculature of the gall-bladder is discussed in detail.Dedicated to Professor Bengt Falck.Supported by the Deutsche Forschungsgemeinschaft and Joachim-Jungius-Gesellschaft zur Förderung der Wissenschaften, Hamburg.  相似文献   

13.
The muscle layer of the canine gallbladder wall and cystic duct was found to be a three-dimensional meshwork of smooth muscle bundles which appear loosely and irregularly arranged on the mucosal aspect and consolidate to form a homogeneous plate-like layer on the serosal aspect. The muscle bundles are tightly woven around interspersed pockets of loose connective tissue in the gallbladder wall and gradually become loosely arranged with more prominent amounts of intervening connective tissue in the cystic duct. The muscle layer is thickest in the gallbladder wall and becomes progressively thinner out into the cystic duct. No anatomic sphincter was observed. Ultrastructural organization revealed individual muscle fibers to be of irregular profile, often branching, widely spaced with intervening collagen fibers, and having few cell-to-cell contacts.  相似文献   

14.
Pressure changes in the gallbladder and the bile flow and pressure changes in the common bile duct were determined in sheep. The experiments were conducted on animals with external junction of choleslochus and cholecystostomy performed previously. The experiments demonstrated pressure in the sheep of the functional sphincter of Mirizzi at the boundary between the intrahepatic and extrahepatic bile ducts. A correlation was demonstrated also between the function of this sphincter and that of Oddi's sphincter. The conditions for bile filling of the extrahepatic bile ducts and gallbladder were determined. The process of bile excretion into the duodenum and the role of bile duct sphincters in this process are discussed. Attention is called to the relationship between the pressure in the gallbladder and the tonus of bile duct sphinters.  相似文献   

15.
Previous studies have shown the existence of a sphincter in the efferent filament artery of the teleost gill and its constrictory response to acetylcholine (ACH) and vagal stimulation. This study deals with the muscular organization of this sphincter and the distribution of its innervation as elucidated by degeneration methods and cytochemistry. The sphincter innervation is supplied by the protrematic vagus nerves. Nerve endings filled with cholinergic-type vesicles are located in close association with the adventitial smooth muscle cells and display a strong acetylcholinesterase (ACHE) activity. Section of the protrematic vagus nerve induces a nearly complete degeneration of the sphincter innervation. ACHE-positive nerve cell bodies are present both in the sphincter area and in the protrematic vagus nerve. These results suggest that innervation of the sphincter in the efferent filament artery is cholinergic through the activity of postganglionic axons of the parasympathetic system.  相似文献   

16.
Morphology of the canine pyloric sphincter in relation to function   总被引:2,自引:0,他引:2  
The ultrastructure and immunocytochemistry of the canine distal pyloric muscle loop, the pyloric sphincter, were studied. Cells in this muscle were connected by gap junctions, fewer than in the antrum or corpus. The sphincter had a dense innervation and a sparse population of interstitial cells of Cajal. Most such cells were of the circular muscle type but a few were of the type in the myenteric plexus. Nerves were sometimes associated with interstitial cell profiles, but most nerves were neither close to nor associated with interstitial cells nor close to smooth muscle cells. Nerve profiles were characterized by an unusually high proportion of varicosities with a majority or a high proportion of large granular vesicles. Many of these were shown to contain material immunoreactive for vasoactive intestinal polypeptide (VIP) and some had substance P (SP) immunoreactive material. All were presumed to be peptidergic. VIP was present in a higher concentration in this muscle than in adjacent antral or duodenal circular muscle. Interstitial cells of Cajal made gap junctions to smooth muscle and to one another and might provide myogenic pacemaking activity for this muscle, but there was no evidence of a close or special relationship between nerves with VIP or SP and these cells. The absence of close relationships between nerves and either interstitial cells or smooth muscle cells leaves unanswered questions about the structural basis for previous observations of discrete excitatory responses or pyloric sphincter to single stimuli or nerves up to one per second. In conclusion, the structural observations suggest that this muscle has special neural and myogenic control systems and that interstitial cells may function to control myogenic activity of this muscle but not to mediate neural signals.  相似文献   

17.
A new surgical procedure for the study of pancreatic secretion in the conscious preruminant goat, under conditions which approach physiological normality, is described. The bile and pancreatic juice retain their natural route and preserve the normal function of the sphincter of Oddi. Experiments could be started 3 days after surgery.  相似文献   

18.
The autonomic innervation of the ovary of the dab was studied histologically and physiologically. The ovary receives a branch of nerve bundles that emerge into the abdominal cavity at the postero-ventral end of the kidney and can be traced back to the sympathetic chain in the vicinity of the 5th vertebra. Almost all the nerve fibers are AChE-positive, and some of them also emit adrenergic fluorescence. Electrical stimulation of the ovarian nerves caused ovarian contractions, and administration of ACh elicited contractions of the ovary preparations, supporting the hypothesis that the ovary is innervated by excitatory cholinergic fibers. In the ovarian nerve bundles, many AChE-positive and non-fluorescent ganglion cells are scattered. Ultrastructural studies suggest that nerve endings situated on the ovarian smooth muscle and on ganglion cells are cholinergic. These results also suggest that the cells are the post-ganglionic neurons of the cholinergic innervation and the axons of the cells reach to the muscle cells. On the other hand, the adrenergic fluoresecent fibers possibly participate in the inhibitory innervation, since the presence of inhibitory beta-adrenoceptors were demonstrated by pharmacological studies.  相似文献   

19.
The innervation of the spermatheca and demonstration of neural control of spermathecal contractions in Locusta migratoria was illustrated using anterograde and retrograde fills, combined with electrophysiological stimulation and recording. The anterior portion of the spermatheca receives innervation via the receptaculum seminis nerve (N2B2) from two large ventral neurons and one dorsal neuron. All were bilaterally paired and situated in the VIIIth abdominal ganglion. Three ventral bilaterally paired neurons situated in the VIIIth abdominal ganglion also provide innervation to the posterior portion of the spermatheca via the ductus seminalis aperture nerve (N2B3). Six DUM neurons, located in the VIIIth abdominal ganglion, in addition to two centroposteriorly situated DUM neurons in the VIIth abdominal ganglion, are also associated with these two nerves. N2B4 also provides innervation to the posterior portion of the spermatheca. N2B6b is associated with sensory cells identified in the anterior lateral regions of the genital chamber. The spermatheca contracts spontaneously, with peristaltic contractions beginning at the spermathecal sac and continuing along the length of the spermathecal duct. However electrical stimulation of the ventral ovipositor nerve (VON or N2B), receptaculum seminis nerve (N2B2) and the ductus seminalis aperture nerve (N2B3) indicates that contractions are also under neural control. In particular contractions of the spermathecal sac, coil duct and anterior straight duct are initiated via motor projections from the receptaculum seminis nerve (N2B2) and posterior straight duct contractions are controlled by motor input from the ductus seminalis aperture nerve (N2B3). The results suggest that spermathecal contractions of the anterior and posterior portions of the spermatheca are under separate neural control.  相似文献   

20.
Summary Calcitonin gene-related peptide immunoreactivity was localized immunohistochemically in nerve fibers innervating the biliary pathway and liver of the guinea-pig. Immunoreactive fibers are present in all layers of the gallbladder and biliary tract and are particularly numerous around blood vessels. In the liver, immunoreactive processes are usually restricted to the interlobular space and porta hepatis, and only a few, very thin, beaded processes were observed in the hepatic parenchyma. A rich innervation is also associated with the vena portae. Positive ganglion cell bodies were not visualized within the ganglionated plexus of the biliary system, whereas they were found in the myenteric and submucosal plexus in the cranial portion of the duodenum corresponding to the sphincter of Oddi. The vast majority, if not all, of calcitonin gene-related peptide-immunoreactive fibers contain substance P immunoreactivity; however, there are some substance P-containing fibers lacking calcitonin gene-related peptide immunoreactivity. The lack of co-occurrence of calcitonin gene-related peptide and substance P immunoreactivities in intrinsic ganglion cells suggests that these two peptides are coexpressed in the extrinsic component of the innervation of the hepatobiliary system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号