首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We previously cultured fragments of newt testes in chemically defined media and showed that mammalian follicle-stimulating hormone (FSH) stimulates proliferation of spermatogonia as well as their differentiation into primary spermatocytes (Ji et al., 1992; Abe and Ji, 1994). Next, we indicated in cultures composed of spermatogonia and somatic cells (mainly Sertoli cells) that FSH stimulates germ cell proliferation via Sertoli cells (Maekawa et al., 1995). However, the spermatogonia did not differentiate into primary spermatocytes, but instead died. In the present study, we embedded large reaggregates of spermatogonia and somatic cells (mainly Sertoli cells) within a collagen matrix and cultured the reaggregates on a filter that floated on chemically defined media containing FSH; in this revised culture system, spermatogonia proliferated and differentiated into primary spermatocytes. The viability and percentage of germ cells differentiating into primary spermatocytes were proportional to the percentage of somatic cells in the culture, indicating that differentiation of spermatogonia into primary spermatocytes is mediated by Sertoli cells.  相似文献   

2.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

3.
In order to elucidate essential factors responsible for the initiation and promotion of spermatogenesis, we developed an organ culture system with a chemically defined medium. When newt testes fragments, consisting of somatic cells and germ cells almost exclusively secondary spermatogonia, were cultured in control medium for three weeks, most of the testicular cysts still contained only secondary spermatogonia. On the other hand, in the medium supplemented with various kinds of hormones and vitamins primary spermatocytes (zygotene-pachytene) appeared in about 60% of the cysts by the second week. Selective removal of specific hormones and vitamins revealed that follicle-stimulating hormone (FSH) alone was indispensable and sufficient for the differentiation of secondary spermatogonia to primary spermatocytes. Neither the addition of luteinizing hormone (LH) nor androgens (testosterone and 5α-dihydrotestosterone) to the control medium stimulated differentiation. Consistent with these findings was the fact that radioreceptor assays revealed high affinity specific binding sites for FSH but none for LH. Since our ultrastructural studies revealed a major loss of contact between spermatogonia and Sertoli cells following exposure to FSH, we suggest that FSH triggers differentiation of spermatogonia by acting on Sertoli cells which in turn act on spermatogonia.  相似文献   

4.
Germ cells and Sertoli and Leydig cell functions were studied from 7 to 180 days after an acute exposure of 2-month-old rat testes to 9 Gy of gamma rays. Body weight, testis and epididymal weights were recorded. Sertoli cell parameters (androgen-binding protein, ABP, in caput epididymis and plasma follicle stimulating hormone, FSH) and Leydig cell parameters (plasma luteinizing hormone, LH, testosterone and prostate and seminal vesicle weights) were determined together with the number of germ cells and Sertoli cells. Irradiation did not affect body weight but significantly reduced testicular and epididymal weights from day 7 and day 15 post-irradiation respectively. The cells killed by irradiation were mainly spermatogonia and preleptotene spermatocytes engaged in replicating their DNA at the time of exposure, but all spermatocytes seemed damaged as they gave abnormal descendent cells. By day 34, only elongated spermatids remained in a few tubules and thereafter very little regeneration of the seminiferous epithelium occurred, except for one rat which showed a better regeneration. Levels of ABP decreased by day 15 when the germ cell depletion had reached the pachytene spermatocytes, whereas FSH and LH levels rose when the number of elongated spermatids decreased. Levels of testosterone and the weight of the seminal vesicles did not change; occasionally, the prostate weight was slightly reduced. These results support our hypothesis that pachytene spermatocytes and elongated spermatids are involved in influencing some aspects of Sertoli cell function in the adult rat.  相似文献   

5.
We previously reported that mammalian FSH induced differentiation of secondary spermatogonia into primary spermatocytes in organ culture of newt testicular fragments, whereas in medium lacking FSH primary spermatocytes never appeared. Here, we investigated why spermatogonia fail to form primary spermatocytes in the absence of FSH. Spermatogonia maintained proliferative activity and viability at about half the level of those cultured in the presence of FSH, progressed into the seventh generation, but became moribund during the G2/M phase. Thus, the eighth generation of spermatogonia never appeared, suggesting that cell death is the chief reason why primary spermatocytes fail to form in the absence of FSH. The presence of Dmc1, a molecular marker for the spermatocyte stage, confirmed our microscopic observations that spermatogonia differentiated into primary spermatocytes in the presence of FSH. Thus, FSH is indispensable for the completion of the last spermatogonial mitosis, a prerequisite for the conversion of germ cells from mitosis to meiosis. Because prolactin induced apoptosis in spermatogonia during the seventh generation, we propose that a checkpoint exists for the initiation of meiosis in the seventh generation whereby spermatogonia enter meiosis when the concentration ratio of FSH to prolactin is high but fail to do so when the ratio is low.  相似文献   

6.
In vitro culturing of normal human seminiferous epithelium remains largely unexplored. To study normal human spermatogenesis in vitro, we used a micromethod for the purification and culture of Sertoli cells, spermatogonia A, spermatocytes, and early round spermatids. Cytological quantitative data for Sertoli and premeiotic germ cell cocultures isolated from normal testicular biopsies demonstrated that cells were able to proliferate (4%), complete meiosis (6.7%), and differentiate into late round (54%), elongating (49%), and elongated (17%) spermatids at similar in vivo time delays (up to 16 days) in response to FSH + testosterone stimulation. Cells maintained normal meiotic segregation, chromosome complements, and specific gene expression profiles. Follicle-stimulating hormone + testosterone stimulated spermatogonia proliferation and Sertoli cell survival. Follicle-stimulating hormone and especially FSH + testosterone increased diploid germ cell survival during the first week, whereas only FSH + testosterone was able to inhibit cell death during the second week of culture. Follicle-stimulating hormone and especially FSH + testosterone also stimulated meiosis resumption, although this was restricted to late pachytene and secondary spermatocytes. In contrast, spermiogenesis was only stimulated by FSH + testosterone. Expression studies showed that apoptosis was induced in the nucleus of diploid cells, and in nuclear and cytoplasmic compartments of spermatids, mainly triggered by the Fas pathway. Although junctional complexes between Sertoli and premeiotic germ cells were partially reacquired, the same did not apply to spermatids, suggesting that FSH potentiated by testosterone was unable to render Sertoli cells competent to bind round spermatids.  相似文献   

7.
Thirty adult stallion testes were selected with high (n = 15) and low (n = 15) Daily Sperm Production (DSP)/testis. Parenchymal samples were prepared for morphometric analysis, and the numbers of germ cells and Sertoli cells were determined. Testicular samples were homogenized, and germ cells and Sertoli cells were enumerated using phase contrast microscopy. Numbers of germ cells and Sertoli cells and potential DSP during spermatogenesis were determined. Significant correlations existed between morphometric and homogenate determinations of number per testis of preleptotene, leptotene plus zygotene primary spermatocytes (r = 0.58; P < 0.001), pachytene plus diplotene primary spermatocytes (r = 0.67; P < 0.0001), all primary spermatocytes (r = 0.67; P < 0.0001), round spermatids (r = 0.72; P < 0.0001), and Sertoli cells (r = 0.70; P < 0.0001). Significant correlations (P < 0.0001) existed between morphometric and homogenate determination of DSP/testis based on preleptotene, leptotene plus zygotene primary spermatocytes (r = 0.78), pachytene plus diplotene primary spermatocytes (r = 0.88), and round spermatids (r = 0.85). Using morphometric determination as the standard, the sensitivity (i.e., ability to detect low DSP/testis) and specificity (i.e., ability to detect high DSP/testis) by homogenate enumeration of germ cells was 81 and 93% for round spermatids, 100 and 24% for pachytene plus diplotene primary spermatocytes, and 67 and 87% for preleptotene, leptotene plus zygotene primary spermatocytes, respectively. Enumeration of primary spermatocytes in homogenates was less accurate than enumeration of round or elongated spermatids. Enumeration of round and elongated spermatids in homogenates was a rapid and useful method for determining DSP in horses, and it may prove to be a useful technique for quantitating potential DSP from testicular biopsies.  相似文献   

8.
9.
The pipefishes Syngnathus abaster and S. acus have paired testes of atypical organization. Each testis is a hollow tube consisting of a single germinal compartment of the tubular type. During the reproductive period, the germinal epithelium consists of small spermatocysts containing spermatogonia or primary spermatocytes. Cysts of older germ cells, such as secondary spermatocytes and spermatids were never observed. Developing symplastic spermatids were found in the lumen of the tubule together with mature sperm and large droplet-containing cells. Most of the spermatids were giant cells with four nuclei at the same developmental stage. Symplastic spermatids, which presumably form by nuclear division not followed by cytokinesis, are a stage of spermatogenesis in pipefishes.  相似文献   

10.
Flow cytometric and histological analysis, measurements of testicular weight and sperm head counts were performed to analyze the effects of doxorubicin (DX) and 4'-epi-doxorubicin (4'-epi-DX), two closely related antineoplastic agents, on mouse spermatogenesis. The DNA distribution patterns obtained by flow cytometry indicate the frequency of different germ cell types: elongated and round spermatids, primary spermatocytes with a 4 c DNA content, and S-phase spermatogonia and spermatocytes. Following the injection of different doses of DX, characteristic changes of the frequencies of those germ cell types are observed with time, indicating selective inactivation of spermatogonia followed by sequential depletion of spermatocytes, round spermatids and elongated spermatids, and then recovery of these cell types. Similar changes were observed with 4'-epi-DX; the dose-response curves indicated that 4'-epi-DX might be slightly, although not significantly, less effective than DX. The mutagenic potential of DX and 4'-epi-DX is reflected by an increase of the coefficient of variation in the DNA histogram as a measure of aneuploidy, and an increase of diploid spermatids. Flow cytometric analysis of spermatogenesis offers a sensitive in vivo system to monitor mutagenic agents.  相似文献   

11.
The nerve growth factor (NGF) not only has an essential effect on the nervous system, but also plays an important role in a variety of non-neuronal systems, such as the reproductive system. The aim of this study was to compare the quality and quantity in expression of NGF and its receptors (TrkA and p75) in testes of the wild ground squirrel during the breeding and nonbreeding seasons. Immunolocalization for NGF was detected mainly in Leydig cells and Sertoli cells in testes of the breeding and nonbreeding seasons. The immunoreactivity of TrkA was highest in the elongated spermatids, whereas p75 in spermatogonia and spermatocytes in testes of the breeding season. In the nonbreeding season testes, TrkA showed positive immunostainings in Leydig cells, spermatogonia and primary spermatocytes, while p75 showed positive signals in spermatogonia and primary spermatocytes. Consistent with the immunohistochemical results, the mean mRNA and protein level of NGF and TrkA were higher in the testes of the breeding season than in non-breeding season, and then decreased to a relatively low level in the nonbreeding season. In addition, the concentration of plasma gonadotropins and testosterone were assayed by radioimmunoassay (RIA), and the results showed a significant difference between the breeding and nonbreeding seasons with higher concentrations in breeding season. In conclusion, these results of this study provide the first evidence on the potential involvement of NGF and its receptor, TrkA and p75 in the seasonal spermatogenesis and testicular function change of the wild ground squirrel.Key words: NGF, p75, seasonal spermatogenesis, TrkA, wild ground squirrel  相似文献   

12.
Testes of vitamin A-deficient Wistar rats before and after vitamin A replacement, of rats irradiated in utero, and of control rats were investigated by in vivo 31P magnetic resonance (MR) spectroscopy. The testicular phosphomonoester/ATP (PM/ATP) ratio ranged from 0.79 +/- 0.05 for testes that contained only interstitial tissue and Sertoli cells to 1.64 +/- 0.04 for testes in which spermatocytes were the most advanced cell types present. When new generations of spermatids entered the seminiferous epithelium, this ratio decreased. The testicular phosphodiester/ATP (PD/ATP) ratio amounted to 0.16 +/- 0.06 for testes in which Sertoli cells, spermatogonia, or spermatocytes were the most advanced cell type present. When new generations of spermatids entered the seminiferous epithelium, the PD/ATP ratio rapidly increased and finally reached a value of 0.71 +/- 0.06 for fully developed testes. Taken together, specific patterns of the PM/ATP ratio, the PD/ATP ratio, and pH were obtained that were correlated to the presence of spermatogonia, spermatocytes, round spermatids, and elongated spermatids or to the absence of spermatogenic cells. Hence, a good impression of the status of the seminiferous epithelium in the rat can be obtained by in vivo 31P MR spectroscopy.  相似文献   

13.
The process of spermatogenesis in explanted testicular fragments from pharate adults (48 hr after puparium formation) of Drosophila melanogaster was examined under in vitro conditions without any added ecdysone substances. In the anterior fragments, which contained spermatogonia, no or only slight changes were found. In the middle fragments which contained germ cells at more advanced stages of spermatogenesis, spermatocytes, and spermatids, a slight increase in the number of spermatocytes or spermatids was observed. In the posterior fragments, which contained sperms at early stages of spermiogenesis, there was a marked elongation of the sperm bundles along their long axis.  相似文献   

14.
Apoptosis appears to have an essential role in the control of germ cell number in testes. During spermatogenesis germ cell deletion has been estimated to result in the loss of up to 75% of the potential number of mature sperm cells. At least three factors seem to determine the onset of apoptosis in male germ cells: (1) lack of hormones, especially gonadotropins and androgens; (2) the specific stage in the spermatogenic cycle; (3) and the developmental stage of the animal. Although male germ cell apoptosis has been well characterized in various animal models, few studies are presently available regarding germ cell apoptosis in the human testis. The first part of this review is focused on germ cell apoptosis in testes of prepubertal boys, with special emphasis on apoptosis in normal and cryptorchid testes. A higher percentage of apoptotic spermatogonia was seen in the cryptorchid testes than in the scrotal testes. The hCG-treatment increased the number of apoptotic spermatogonia. The hCG-treatment-induced apoptosis in spermatogonia had severe long-term consequences in reproductive functions in adulthood. Increased apoptosis after hCG-treatment was associated with subnormal testis volumes, subnormal sperm density and pathologically elevated serum FSH. This finding indicates that increased apoptosis in spermatogonia in prepuberty leads to disruption of testis development. To evaluate the role of apoptosis in human adult testes, apoptosis was induced in seminiferous tubules that were incubated under serum-free conditions in the absence or presence of testosterone. Most frequently apoptosis was identified in spermatocytes. Occasionally some spermatids also showed signs of apoptosis. In short term incubations apoptosis was suppressed by testosterone. Our findings lead to the conclusion that apoptosis is a normal, hormonally controlled phenomenon in the human testis. The role of apoptosis in disorders of spermatogenesis remains to be established.  相似文献   

15.
Recombinant human insulin-like growth factors (rhIGF-I and rhIGF-II) and human insulin promoted the differentiation of spermatogonia into primary spermatocytes in newt testes fragments cultured in a chemically defined medium. The biological potency for promoting differentiation was dose-dependent for all the ligands with the highest potency displayed by IGF-I, followed by IGF-II, and the least by insulin. The difference in potency was larger between IGF-II and insulin than that between IGF-I and IGF-II. This order of biological potency was in good accordance with the order of affinity in binding specificity of [125I]IGF-I to the testicular membrane fractions: IGF-II and insulin competed the binding of [125I]IGF-I only at concentrations 20-fold and 100-fold higher, respectively, than IGF-I. Specific binding was observed in both somatic cells (mostly Sertoli cells) and germ cells (spermatogonia and primary spermatocytes), though the binding to somatic cells was about 2.7 times higher than that to germ cells. These results indicate that (1) specific binding sites for IGF-I are present in the newt testes, (2) IGF-II and insulin also bind to these receptors but to a lesser degree, and (3) IGF-II and insulin as well as IGF-I promote spermatogonial differentiation into primary spermatocytes by binding to the IGF-I receptor.  相似文献   

16.
Male germ cells are susceptible to radiation-induced injury, and infertility is a common problem after total-body irradiation. Here we investigated, first, the effects of irradiation on germ cells in mouse testis and, second, the role of sphingosine-1-phosphate (S1P) treatment in radiation-induced male germ cell loss. Irradiation of mouse testes mainly damaged the early developmental stages of spermatogonia. The damage was seen by means of DNA flow cytometry 21 days after irradiation as decreasing numbers of spermatocytes and spermatids with increasing amounts of ionizing radiation (0.1-2.0 Gy). Intratesticular injections of S1P given 1-2 h before irradiation (0.5 Gy) did not protect against short-term germ cell loss as measured by in situ end labeling of DNA fragmentation 16 h after irradiation. However, after 21 days, in the S1P-treated testes, the numbers of primary spermatocytes and spermatogonia at G2 (4C peak as measured by flow cytometry) were higher at all stages of spermatogenesis compared with vehicle-treated testes, indicating protection of early spermatogonia by S1P, whereas the spermatid (1C) populations were similar. In conclusion, S1P appears to protect partially (16%-47%) testicular germ cells against radiation-induced cell death. This warrants further studies aimed at development of therapeutic agents capable of blocking sphingomyelin-induced pathways of germ cell loss.  相似文献   

17.
Apoptosis plays an important role in controlling germ cell numbers and restricting abnormal cell proliferation during spermatogenesis. The tumor suppressor protein, p53, is highly expressed in the testis, and is known to be involved in apoptosis, which suggests that it is one of the major causes of germ cell loss in the testis. Mice that are c-kit/SCF mutant (Sl/Sld) and cryptorchid show similar testicular phenotypes; they carry undifferentiated spermatogonia and Sertoli cells in their seminiferous tubules. To investigate the role of p53-dependent apoptosis in infertile testes, we transplanted p53-deficient spermatogonia that were labeled with enhanced green fluorescence protein into cryptorchid and Sl/Sld testes. In cryptorchid testes, transplanted p53-deficient spermatogonia differentiated into spermatocytes, but not into haploid spermatids. In contrast, no differentiated germ cells were observed in Sl/Sld mutant testes. These results indicate that the mechanism of germ cell loss in the c-kit/SCF mutant is not dependent on p53, whereas the apoptotic mechanism in the cryptorchid testis is quite different (i.e., although the early stage of differentiation of spermatogonia and the meiotic prophase is dependent on p53-mediated apoptosis, the later stage of spermatids is not).  相似文献   

18.
Q Y Hu  S P Zhu 《Mutation research》1990,244(3):209-214
Cytogenetic damage induced by a wide range of concentrations of uranyl fluoride injected into mouse testes was evaluated by determining the frequencies of chromosomal aberrations in spermatogonia and primary spermatocytes. Breaks, gaps and polyploids were observed in spermatogonia. The frequencies of the significant type of aberration, breaks, were induced according to the injected doses of uranyl fluoride. Primary spermatocytes were examined for fragments, univalents and multivalents. The multivalents observed in this study resulted either from chromatid interchanges or from reciprocal translocations. The reciprocal translocations were induced in spermatogonia and recorded in primary spermatocytes. For primary spermatocytes the incidence of aberrant cells largely depended on the administered dose. Sampling time after treatment could affect the frequencies of chromosomal aberrations in male mouse germ cells.  相似文献   

19.
In the mouse testis, spontaneous death of spermatogonia has a large impact on the output of differentiating spermatids. The tyrosine kinase receptor c-kit is expressed in type A, intermediate, and B spermatogonia, and kit-ligand (KL) is expressed in Sertoli cells. Previous work indicated a depletion of type A spermatogonia after in vivo exposure to an antibody that blocks c-kit function. The present work was undertaken to determine whether blocking c-kit function results in apoptosis of spermatogonia or in an inability of spermatogonia to proliferate. Testes sections were stained by a method that detects apoptotic cells in situ. In testes of 8-day postnatal (P8) males, type A spermatogonia are the predominant germ cell type present. Stained sections from P8 males injected with the c-kit antagonistic antibody ACK2 showed a fivefold higher rate of cell death than uninjected controls. At least a twofold increase was observed in P12 and P30 injected males and in P30 SId + males as compared to uninjected controls. Determination of the stage of germ cell development that was affected in P30 males indicated that the frequency of gonial cell death was increased fourfold, but the frequency of death in spermatocytes around the time of the meiotic division was increased 15-fold. It is concluded that KL acts to prevent apoptosis in the testis in vivo, that the membrane bound form of KL may be more effective, and that survival of late meiotic and dividing spermatocytes is regulated by KL through an indirect mechanism probably mediated by Sertoli cells. Thus, KL is an important regulator of spermatid output. © 1995 wiley-Liss, Inc.  相似文献   

20.
In order to test the hypothesis that a lack of energy could be a cause of germ cell death at high temperatures, cryptorchid rats testes were infused with lactate, delivered by osmotic pumps over 3-15 days. In cryptorchid testes, the spermatids and spermatocytes were lost between 3 and 8 days. In cryptorchid testes supplemented with lactate, elongated spermatids persisted in a few seminiferous tubules at Day 15. Elimination of round spermatids occurred progressively between 3 and 15 days, mostly at stage VIII. The loss of spermatocytes increased after 8 days, and 30% of seminiferous tubules still contained meiotic or meiotic plus spermiogenetic cells at Day 15. After 8 days, the chromatin of step 8 round spermatids was abnormal and nuclear elongation did not commence. The Sertoli cell cytoplasm that was retracted toward the basal compartment of the seminiferous epithelium could not hold the germ cells of the adluminal compartment. Therefore, attachment of germ cells to Sertoli cells and the supply of lactate seem necessary for the development of germ cells at high temperatures. The improvement in spermatogenesis in cryptorchid supplemented testes for several days is a new finding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号