共查询到20条相似文献,搜索用时 15 毫秒
1.
Sandler SJ 《Genetics》2000,155(2):487-497
In Escherichia coli, the primosome assembly proteins, PriA, PriB, PriC, DnaT, DnaC, DnaB, and DnaG, are thought to help to restart DNA replication forks at recombinational intermediates. Redundant functions between priB and priC and synthetic lethality between priA2::kan and rep3 mutations raise the possibility that there may be multiple pathways for restarting replication forks in vivo. Herein, it is shown that priA2::kan causes synthetic lethality when placed in combination with either Deltarep::kan or priC303:kan. These determinations were made using a nonselective P1 transduction-based viability assay. Two different priA2::kan suppressors (both dnaC alleles) were tested for their ability to rescue the priA-priC and priA-rep double mutant lethality. Only dnaC809,820 (and not dnaC809) could rescue the lethality in each case. Additionally, it was shown that the absence of the 3'-5' helicase activity of both PriA and Rep is not the critical missing function that causes the synthetic lethality in the rep-priA double mutant. One model proposes that replication restart at recombinational intermediates occurs by both PriA-dependent and PriA-independent pathways. The PriA-dependent pathways require at least priA and priB or priC, and the PriA-independent pathway requires at least priC and rep. It is further hypothesized that the dnaC809 suppression of priA2::kan requires priC and rep, whereas dnaC809,820 suppression of priA2::kan does not. 相似文献
2.
3.
4.
DNA replication of single-stranded Escherichia coli DNA phages 总被引:14,自引:0,他引:14
P D Baas 《Biochimica et biophysica acta》1985,825(2):111-139
5.
6.
Initiation of DNA replication in Escherichia coli. 总被引:4,自引:1,他引:3
W Messer 《Journal of bacteriology》1987,169(8):3395-3399
7.
Intermediates of chromosomal DNA replication in Escherichia coli 总被引:2,自引:0,他引:2
The product of bacteriophage T4 gene 63 has two activities, one which catalyzes the attachment of tail fibers to base plates during morphogenesis (TFA) and one which catalyzes the joining of single-stranded polynucleotides (RNA ligase). The only phenotype attributed to mutations in gene 63 is a defect in attachment of tail fibers leading to fiberless T4 particles. However, it is suspected that TFA and RNA ligase are unrelated activities of the same protein since they have very different requirements in vitro.We have isolated new mutants which have lost the RNA ligase but have retained the TFA activity of the product of gene 63. These mutants exhibit defects in T4 DNA replication and late gene expression in some strains of Escherichia coli. This work allows us to draw three conclusions: (1) the TFA and RNA ligase activities are unrelated functions of the gene 63 product making this the prototype for a protein which has more than one unrelated function; (2) the RNA ligase is probably involved in DNA metabolism rather than RNA processing as has been proposed: (3) the RNA ligase and polynucleotide 5′ kinase 3′ phosphatase of T4 perform intimately related functions. 相似文献
8.
Enzymatic mechanisms of DNA replication in Escherichia coli 总被引:7,自引:0,他引:7
R E Moses J L Campbell R A Fleischman G D Frenkel H L Mulcahy H Shizuya C C Richardson 《Federation proceedings》1972,31(5):1415-1421
9.
10.
Mutants of the dnaA, dnaC, dnaD, polC, dnaF and dnaG gene loci were tested for their capacity for colicinogenic plasmid E1 (ColE1) replication at a non-permissive temperature. It was found that ColE1 replication was independent of the dnaA gene function and dependent on dnaC, D, F and G. ColE1 replication in the polC mutant E486 continued for several hours but at a greatly reduced rate. No effect was found of the dnaG mutation on thymine-deprivation-induced "priming" of ColE1 replication at the non-permissive temperature. The mutants also were tested for aberrant replication intermediates of plasmid DNA as well as a temperature sensitive supercoiled DNA-protein relaxation complex. RNA-containing supercoils were found to accumulate in a poIC mutant also blocked for protein synthesis. 相似文献
11.
Summary A mutant of Escherichia coli with a temperature sensitive defect in DNA replication is sensitive to X-irradiation but not to UV-irradiation. After UV-irradiation, dark-repair processes—dimer excision, DNA breakdown, repair synthesis and DNA strand joining—appear normal at the restrictive temperature. After X-irradiation, DNA degradation exceeds that in the wild type, and irradiation-dependent DNA synthesis does not occur. Single-strand breaks introduced into the DNA by the irradiation are nor repaired. The data indicate that the mutation results in a defect in repair of X-ray induced single-strand breaks as well as a defect in DNA replication. They provide evidence for the existence of a repair pathway for X-irradiated DNA similar to, but at least partially independent from, that postulated for the dark-repair of UV-irradiated DNA, viz., degradation at the site of the lesion, resynthesis of the degraded DNA complement and ligation of the DNA strand.This material has been published as an abstract in Genetics 64, p. 18 (1970). 相似文献
12.
Autoradiographic evidence is presented that demonstrates bidirectional DNA replication during a synchronous round of DNA synthesis in a culture of a reversible temperature sensitive DNA initiation mutant of Escherichia coli K12. High specific activity [3H]thymine was incorporated into the origins and termini of chromosomes which were otherwise uniformly labeled with low specific activity [3H]thymine. Autoradiographs of such differentially labeled chromosomes show two regions of high grain density symmetrically disposed on the circular chromosomes. This demonstrates that the origins and termini of replication are not contiguous; therefore replication must have proceeded in two directions. 相似文献
13.
14.
15.
16.
Karolina Makiela‐Dzbenska Malgorzata Jaszczur Magdalena Banach‐Orlowska Piotr Jonczyk Roel M. Schaaper Iwona J. Fijalkowska 《Molecular microbiology》2009,74(5):1114-1127
We have investigated the possible role of Escherichia coli DNA polymerase (Pol) I in chromosomal replication fidelity. This was done by substituting the chromosomal polA gene by the polAexo variant containing an inactivated 3′→5′ exonuclease, which serves as a proofreader for this enzyme's misinsertion errors. Using this strain, activities of Pol I during DNA replication might be detectable as increases in the bacterial mutation rate. Using a series of defined lacZ reversion alleles in two orientations on the chromosome as markers for mutagenesis, 1.5‐ to 4‐fold increases in mutant frequencies were observed. In general, these increases were largest for lac orientations favouring events during lagging strand DNA replication. Further analysis of these effects in strains affected in other E. coli DNA replication functions indicated that this polAexo mutator effect is best explained by an effect that is additive compared with other error‐producing events at the replication fork. No evidence was found that Pol I participates in the polymerase switching between Pol II, III and IV at the fork. Instead, our data suggest that the additional errors produced by polAexo are created during the maturation of Okazaki fragments in the lagging strand. 相似文献
17.
McGlynn P 《Biochemical Society transactions》2011,39(2):606-610
A pre-requisite for successful cell division in any organism is synthesis of an accurate copy of the genetic information needed for survival. This copying process is a mammoth task, given the amount of DNA that must be duplicated, but potential blocks to replication fork movement also pose a challenge for genome duplication. Damage to the template inhibits the replication machinery but proteins bound to the template such as RNA polymerases also present barriers to replication. This review discusses recent results from Escherichia coli that shed light on the roles of helicases in overcoming protein-DNA barriers to replication and that may illustrate fundamental aspects of how duplication of protein-bound DNA is underpinned in all organisms. 相似文献
18.
We examined the effects of mutations in the polA (encoding DNA polymerase I) and polB (DNA polymerase II) genes on inducible and constitutive stable DNA replication (iSDR and cSDR, respectively), the two alternative DNA replication systems of Escherichia coli. The polA25::miniTn10spc mutation severely inactivated cSDR, whereas polA1 mutants exhibited a significant extent of cSDR. cSDR required both the polymerase and 5'-->3' exonuclease activities of DNA polymerase I. A similar requirement for both activities was found in replication of the pBR322 plasmid in vivo. DNA polymerase II was required neither for cSDR nor for iSDR. In addition, we found that the lethal combination of an rnhA (RNase HI) and a polA mutation could be suppressed by the lexA(Def) mutation. 相似文献
19.
Role of DNA polymerase II in repair replication in Escherichia coli 总被引:11,自引:0,他引:11
20.
Mutants of Escherichia coli lacking RNase HI activity and cells induced for the SOS response express modes of DNA replication independent of protein synthesis, called constitutive and induced stable DNA replication, respectively. We report here that mutants deleted for the polA gene express induced stable DNA replication at approximately 25-fold the rate of wild-type cells, whereas constitutive stable DNA replication is not enhanced. 相似文献