共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
Four RNA polymerase II promoters have been mapped in the DNA sequence of the EcoRI-H and -Dhet fragments of B95-8 Epstein-Barr virus. RNAs transcribed from three of these promoters are dramatically induced by treatment of B95-8 cells with 12-O-tetradecanoylphorbol-13-acetate (TPA). The other promoter is active with or without TPA treatment of the cells and is thus active in the latent virus cycle. Deletion mapping suggests that DNA sequence homologies between some of the promoters lie in the same region as essential upstream promoter elements. 相似文献
3.
4.
Ladell K Dorner M Zauner L Berger C Zucol F Bernasconi M Niggli FK Speck RF Nadal D 《Cellular microbiology》2007,9(8):2055-2069
Primary infection with Epstein-Barr virus (EBV) is asymptomatic in children with immature immune systems but may manifest as infectious mononucleosis, a vigorous immune activation, in adolescents or adults with mature immune systems. Infectious mononucleosis and chronic immune activation are linked to increased risk for EBV-associated lymphoma. Here we show that EBV initiates progressive lytic infection by expression of BZLF-1 and the late lytic genes gp85 and gp350/220 in cord blood mononuclear cells (CBMC) but not in peripheral blood mononuclear cells (PBMC) from EBV-naive adults after EBV infection ex vivo. Lower levels of proinflammatory cytokines in CBMC, used to model a state of minimal immune activation and immature immunity, than in PBMC were associated with lytic EBV infection. Triggering the innate immunity specifically via Toll-like receptor-9 of B cells substantially suppressed BZLF-1 mRNA expression in acute EBV infection ex vivo and in anti-IgG-stimulated chronically latently EBV-infected Akata Burkitt lymphoma cells. This was mediated in part by IL-12 and IFN-gamma. These results identify immune activation as critical factor for the suppression of initiation of lytic EBV infection. We hypothesize that immune activation contributes to EBV-associated lymphomagenesis by suppressing lytic EBV and in turn promotes latent EBV with transformation potential. 相似文献
5.
Protein kinase C-independent activation of nuclear factor kappa B by tumor necrosis factor 总被引:24,自引:0,他引:24
A Meichle S Schütze G Hensel D Brunsing M Kr?nke 《The Journal of biological chemistry》1990,265(14):8339-8343
6.
Induction of Epstein-Barr virus lytic cycle by tumor-promoting and non-tumor-promoting phorbol esters requires active protein kinase C. 下载免费PDF全文
Exposure to the tiglian 12-O-tetradecanoylphorbol-13-acetate (TPA) represents one of the most efficient and widely used protocols for inducing Epstein-Barr virus (EBV)-infected cells from latent into lytic cycle. Since TPA is both a potent tumor promoter and a potent activator of the cellular protein kinase C (PKC), we sought to determine whether either of these activities was closely linked to EBV lytic cycle induction. A panel of TPA structural analogs, encompassing tiglians with different spectra of biological activities, was assayed on a number of EBV-positive B-lymphoid cell lines. Lytic cycle induction correlated with the capacity to activate PKC, not with tumor promoter status; some nonpromoting tiglians were as efficient as TPA in inducing lytic cycle antigen expression. We then sought more direct evidence for an involvement of PKC in the induction process. In initial experiments, 1-(5-isoquinolinyl sulphonyl)-2-methylpiperazine (H-7), the best available pharmacological inhibitor of PKC, completely blocked the induction of the lytic cycle by TPA and its active analogs. This is consistent with, but does not prove, a requirement for active PKC in the induction process, since H-7 targets PKC preferentially but also has some effects on other kinases. We therefore turned to the synthetic pseudosubstrate peptide PKC(19-36) as a means of specific PKC inhibition and to the closely related but inactive peptide PKC(19-Ser-25-36) as a control. Using the technique of scrape loading to deliver the peptides into cells of an adherent EBV-positive target line, we found that the pseudosubstrate peptide PKC(19-36) completely and specifically blocked tiglian-induced entry of the cells into the lytic cycle. The evidence both from TPA analogs and from enzyme inhibition studies therefore indicates that the pathway linking TPA treatment to lytic cycle induction involves active PKC. Interestingly, inhibition of PKC had no effect upon the spontaneous entry into lytic cycle which occurs in naturally productive cell lines, suggesting that spontaneous entry is signalled by another route. 相似文献
7.
8.
Pathways of activation of the Epstein-Barr virus productive cycle. 总被引:4,自引:21,他引:4
The promoter for the 2.8-kb RNA of Epstein-Barr virus encoding BZLF1 and BRLF1 was identified and shown to be activated by both BZLF1 and BRLF1 but not by 12-O-tetradecanoylphorbol-13-acetate. Site-directed mutagenesis suggests that two binding sites for BZLF1 within the promoter contribute to the transactivation by BZLF1. The early kinetics of induction of the 2.8- and 1.0-kb RNAs encoding BZLF1 and BRLF1 in Akata cells treated with anti-immunoglobulin indicate that both RNAs appear within 60 min. The results indicate some likely pathways of activation of Epstein-Barr virus productive cycle gene expression. 相似文献
9.
10.
11.
12.
13.
14.
15.
16.
Spontaneous activation of the lytic cycle in cells infected with a recombinant Kaposi's sarcoma-associated virus 下载免费PDF全文
The genetic analysis of human herpesvirus 8 (HHV8), also termed Kaposi's sarcoma-associated virus, has been hampered by severe difficulties in producing infectious viral particles and modifying the viral genome. In this article, we report the successful cloning of the HHV8 complete genome onto a prokaryotic F-plasmid replicon which allows the propagation of the recombinant viral DNA in Escherichia coli. The insertion of the F-plasmid into the HHV8 genome interrupts the ORF56 gene, whose expression product-by homology with the Epstein-Barr virus BSLF1 gene--is supposed to be necessary for lytic DNA replication. After introduction of the recombinant HHV8 DNA into 293 cells, early viral antigens are expressed, suggesting that spontaneous lytic replication is initiated. However, completion of the lytic program is prevented by the absence of the ORF56 protein, and a quasi-latent state is established. Upon reintroduction of the ORF56 viral gene, the block is overcome and infectious HHV8 virions are produced. As the recombinant HHV8 genome can be easily modified in E. coli, this experimental system opens the way to an extensive genetic analysis of other HHV8 functions. 相似文献
17.
Imagawa N Nagasawa K Nagai K Kawakami-Honda N Fujimoto S 《Archives of biochemistry and biophysics》2005,438(2):119-124
Cytochalasin D (CD) induced production of the superoxide radical (O(2)(-)) in guinea pig polymorphonuclear leukocytes (PMNs). The protein kinase C (PKC) inhibitor GF109203X (GFX) was rarely without effect on CD-induced O(2)(-) production. CD as well as PMA induced the translocation of p47(phox) to the membrane fraction, and this translocation was slightly decreased by GFX. Moreover, the inhibitory effect of a PKCzeta antagonist with sequences based on the endogenous PKCzeta pseudosubstrate region was weaker than the inhibitory effect on N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced O(2)(-) production. On the other hand, the production of O(2)(-) induced by CD was more strongly suppressed by the PLD inhibitor ethanol and phosphatidylinositol 3-kinase (PI3-K) inhibitor wortmannin than that induced by fMLP, and the activation of phospholipase D (PLD) by CD was restrained by wortmannin. These findings suggest that NADPH oxidase is activated by CD through a PKC-independent signaling pathway in PMNs, and this pathway involves the activation of PLD through PI3-K. 相似文献
18.
19.
Architecture of replication compartments formed during Epstein-Barr virus lytic replication 下载免费PDF全文
Daikoku T Kudoh A Fujita M Sugaya Y Isomura H Shirata N Tsurumi T 《Journal of virology》2005,79(6):3409-3418
Epstein-Barr virus (EBV) productive DNA replication occurs at discrete sites, called replication compartments, in nuclei. In this study we performed comprehensive analyses of the architecture of the replication compartments. The BZLF1 oriLyt binding proteins showed a fine, diffuse pattern of distribution throughout the nuclei at immediate-early stages of induction and then became associated with the replicating EBV genome in the replication compartments during lytic infection. The BMRF1 polymerase (Pol) processivity factor showed a homogenous, not dot-like, distribution in the replication compartments, which completely coincided with the newly synthesized viral DNA. Inhibition of viral DNA replication with phosphonoacetic acid, a viral DNA Pol inhibitor, eliminated the DNA-bound form of the BMRF1 protein, although the protein was sufficiently expressed in the cells. These observations together with the findings that almost all abundantly expressed BMRF1 proteins existed in the DNA-bound form suggest that the BMRF1 proteins not only act at viral replication forks as Pol processive factors but also widely distribute on newly replicated EBV genomic DNA. In contrast, the BALF5 Pol catalytic protein, the BALF2 single-stranded-DNA binding protein, and the BBLF2/3 protein, a component of the helicase-primase complex, were colocalized as distinct dots distributed within replication compartments, representing viral replication factories. Whereas cellular replication factories are constructed based on nonchromatin nuclear structures and nuclear matrix, viral replication factories were easily solubilized by DNase I treatment. Thus, compared with cellular DNA replication, EBV lytic DNA replication factories would be simpler so that construction of the replication domain would be more relaxed. 相似文献
20.
Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes 下载免费PDF全文
Initiation of the Epstein-Barr virus (EBV) lytic cycle is controlled by two immediate-early genes, BZLF1 and BRLF1. In certain epithelial and B-cell lines, their protein products, ZEBRA and Rta, stimulate their own expression, reciprocally stimulate each other's expression, and activate downstream viral targets. It has been difficult to examine the individual roles of these two transactivators in EBV-infected lymphocytes, as they are expressed simultaneously upon induction of the lytic cycle. Here we show that the Burkitt lymphoma cell line Raji represents an experimental system that allows the study of Rta's role in the lytic cycle of EBV in the absence and presence of ZEBRA. When expressed in Raji cells, exogenous Rta does not activate endogenous BZLF1 expression, yet Rta remains competent to transactivate certain downstream viral targets. Some genes, such as BaRF1, BMLF1, and a late gene, BLRF2, are maximally activated by Rta itself in the absence of detectable ZEBRA. The use of the Z(S186A) mutant form of ZEBRA, whose transactivation function is manifest only by coexpression of Rta, allows identification of a second class of lytic cycle genes, such as BMRF1 and BHRF1, that are activated in synergy by Rta and ZEBRA. It has already been documented that of the two activators, only ZEBRA stimulates the BRLF1 gene in Raji cells. Thus, there is a third class of viral genes activated by ZEBRA but not Rta. Moreover, ZEBRA exhibits an inhibitory effect on Rta's capacity to stimulate the late gene, BLRF2. Consequently ZEBRA may function to repress Rta's potential to activate some late genes. Raji cells thus allow delineation of the combinatorial roles of Rta and ZEBRA in control of several distinct classes of lytic cycle genes. 相似文献