首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chitin deacetylase (CDA), the enzyme that catalyzes the hydrolysis of acetamido groups of GlcNAc in chitin, was purified from culture filtrate of the fungus Mortierella sp. DY-52 and characterized. The extracellular enzyme is likely to be a highly N-glycosylated protein with a pI of 4.2-4.8. Its apparent molecular weight was determined to be about 52 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and 67 kDa by size-exclusion chromatography. The enzyme had an optimum pH of 6.0 and an optimum temperature of 60 °C. Enzyme activity was slightly inhibited by 1-10 mM Co(2+) and strongly inhibited by 10 mM Cu(2+). It required at least two GlcNAc residues for catalysis. When (GlcNAc)(6) was used as substrate, K(m) and V(max) were determined to be 1.1 mM and 54.6 μmol min(-1) respectively.  相似文献   

2.
The production of an extracellular chitin deacetylase (CDA) produced by Aspergillus flavus under solid-substrate fermentation (SSF) using wheat bran as substrate was optimized using statistical methods. The CDA production in SSF increased 1.79-fold in comparison to the unoptimized basal level medium. It was purified to a final purity of 3.94-fold by ammonium sulphate precipitation, ion-exchange chromatography, and gel-permeation chromatography (GPC) consecutively and further characterized. The molecular mass of the enzyme was estimated to be about 28?kDa by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and GPC analysis. The optimum pH and temperature of the purified enzyme were pH 8.0 and 50?°C, respectively. Additionally, the effect of some cations and other chemical compounds on the CDA activity was studied. A marginal increase in enzyme activity was observed with metal ions mainly Mn2+ and Zn2+. No inhibition of the enzyme was observed by the end product, that is, acetate up to 70?mM concentration. The Km and kcat values of the enzyme were determined to be 9.45?mg mL?1 and 26.72?s?1 respectively, using colloidal chitin as substrate. Among various substrates tested, glycol chitin and colloidal chitin were deacetylated.  相似文献   

3.
Chitin deacetylase catalyzes hydrolysis of the acetamido groups of N-acetylglucosamine of chitin in fungal cell walls. Here a chitin deacetylase secreted by Rhizopus circinans was purified to homogeneity and partially characterized. The enzyme exhibits an apparent molecular weight of approximately 75kDa. At 37 degrees C it shows optimal activity at pH 5.5-6. Its pH stability and thermal stability are good. Mn(2+) and Mg(2+) slightly enhance the activity of the enzyme and Cu(2+) strongly inhibits it. An R. circinans cDNA library was constructed and screened with a homologous probe synthesized by RT-PCR or with synthetic primers derived from the N-terminal amino-acid sequence of the native purified chitin deacetylase. Three chitin deacetylase cDNAs (RC, D2, and I3/2) were isolated from the cDNA library and sequenced. These cDNAs exhibit features characteristic of chitin deacetylase sequences: the presence of a polysaccharide deacetylase domain, a metal-binding triad, the conserved catalytic residues, and high homology with various chitin deacetylase genes. The cDNAs were cloned in a Pichia pastoris expression system and produced as polyhistidine-tagged proteins. Only one recombinant enzyme (called RC) was active under the tested conditions. It was purified to homogeneity in a single step and further characterized. The protein showed an apparent molecular mass of approximately 75kDa and, like the native enzyme, showed optimal activity at pH 5.5-6 at 37 degrees C. It was strongly inhibited by Cu(2+). The isolation of several chitin deacetylase cDNAs from the same microorganism is discussed.  相似文献   

4.
The possible contribution of extracellular constitutively produced chitin deacetylase by Metarhizium anisopliae in the process of insect pathogenesis has been evaluated. Chitin deacetylase converts chitin, a beta-1,4-linked N-acetylglucosamine polymer, into its deacetylated form chitosan, a glucosamine polymer. When grown in a yeast extract-peptone medium, M. anisopliae constitutively produced the enzymes protease, lipase, and two chitin-metabolizing enzymes, viz. chitin deacetylase (CDA) and chitosanase. Chitinase activity was induced in chitin-containing medium. Staining of 7.5% native polyacrylamide gels at pH 8.9 revealed CDA activity in three bands. SDS-PAGE showed that the apparent molecular masses of the three isoforms were 70, 37, and 26 kDa, respectively. Solubilized melanin (10microg) inhibited chitinase activity, whereas CDA was unaffected. Following germination of M. anisopliae conidia on isolated Helicoverpa armigera, cuticle revealed the presence of chitosan by staining with 3-methyl-2-benzothiazoline hydrazone. Blue patches of chitosan were observed on cuticle, indicating conversion of chitin to chitosan. Hydrolysis of chitin with constitutively produced enzymes of M. anisopliae suggested that CDA along with chitosanase contributed significantly to chitin hydrolysis. Thus, chitin deacetylase was important in initiating pathogenesis of M. anisopliae softening the insect cuticle to aid mycelial penetration. Evaluation of CDA and chitinase activities in other isolates of Metarhizium showed that those strains had low chitinase activity but high CDA activity. Chemical assays of M. anisopliae cell wall composition revealed the presence of chitosan. CDA may have a dual role in modifying the insect cuticular chitin for easy penetration as well as for altering its own cell walls for defense from insect chitinase.  相似文献   

5.
Chitosan is a biopolymer obtained by deacetylation of chitin and has been proven to have various applications in industry and biomedicine. Deacetylation of chitin using the enzyme chitin deacetylase (CDA) is favorable in comparison to the hazardous chemical method involving strong alkali and high temperature. A fungal strain producing CDA was isolated from environmental samples collected from coastal regions of South Kerala, India. It was identified as Aspergillus flavus by morphological characteristics and ITS DNA analysis. Nutritional requirement for maximum production of CDA under submerged condition was optimized using statistical methods including Plackett–Burman and response surface methodology central composite design. A 5.98-fold enhancement in CDA production was attained in shake flasks when the fermentation process parameters were used at their optimum levels. The highest CDA activity was 57.69 ± 1.68 U under optimized bioprocess conditions that included 30 g L?1 glucose, 40 g L?1 yeast extract, 15 g L?1 peptone, and 7 g L?1 MgCl2 at initial media pH of 7 and incubation temperature of 32°C after 48 hr of incubation, while the unoptimized basal medium yielded 9.64 ± 2.04 U.  相似文献   

6.
Wang SL  Chen SJ  Wang CL 《Carbohydrate research》2008,343(7):1171-1179
A chitinase (CHT1) and a chitosanase (CHS1) were purified from the culture supernatant of Pseudomonas sp. TKU015 with shrimp shell wastes as the sole carbon and nitrogen source. The optimized conditions of this new species strain (Gen Bank Accession Number EU103629) for the production of chitinases were found to be when the culture was shaken at 30 degrees C for 3 days in 100 mL of medium (pH 8) containing 0.5% shrimp shell powder (SSP) (w/v), 0.1% K2HPO4, and 0.05% MgSO(4).7H2O. The molecular weights of CHT1 and CHS1 determined by SDS-PAGE were approximately 68 kDa and 30 kDa, respectively. The optimum pH, optimum temperature, pH stability, and the thermal stability of CHT1 and CHS1 were pH 6, 50 degrees C, pH 5-7, <50 degrees C and pH 4, 50 degrees C, pH 3-9, <50 degrees C, respectively. CHT1 was inhibited completely by Mn2+ and Fe2+, and CHS1 was inhibited by Mn2+, Cu2+, and PMSF. CHT1 was only specific to chitin substrates, whereas the relative activity of CHS1 increased when the degree of deacetylation of soluble chitosan increased.  相似文献   

7.
The enzymatic deacetylation of various chitin preparations was investigated using the fungal chitin deacetylase (CDA) isolated from Rhizopus oryzae growth medium. Specific extracellular enzyme activity after solid state fermentation was 10 times higher than that after submerged fermentation. Natural crystalline chitin is a very poor substrate for the enzyme, but showed a five-time better deacetylation after dissolution and reprecipitation. Chitin particles, enzymatically deacetylated for only 1% exhibited a strongly increased binding capacity towards ovalbumin, while maintaining the rigidity and insolubility of chitin in a moderate acidic environment. Because of the unique combination of properties, these CDA treated chitin materials were named "chit-in-osan". Chitinosan was shown to be an attractive matrix for column chromatography because no hydrogel formation was observed, that impaired the flow of eluent. Under the same conditions, partially deacetylated chitosan swelled and blocked the flow in the column.  相似文献   

8.
Aspergillus awamori IFO 4033 produced an acid-stable protopectinase in solid-state fermentation using wheat bran as the medium. The enzyme was purified to a homogeneous preparation with anion-exchange, hydrophobic, and size-exclusion chromatography. The enzyme was a monomeric protein of 52 kDa, by SDS-PAGE analysis, with an isoelectric point of pH 3.7. The optimum pH for enzyme activity was 2.0, and it was most active at 50 degrees C (at pH 2.0) and was stable up to 50 degrees C (at pH 2.0). The enzyme showed pectin-releasing activity toward protopectins from various origins, especially on lemon protopectin. An outstanding characteristic of the enzyme was its extreme stability in acidic conditions: the enzyme activity was not lost after incubating at pH 2.0 and 37 degrees C for 24 h.  相似文献   

9.
Chitin deacetylase (CDA), the enzyme that catalyzes the hydrolysis of acetamido groups of GlcNAc in chitin, was purified from culture filtrate of the fungus Mortierella sp. DY-52 and characterized. The extracellular enzyme is likely to be a highly N-glycosylated protein with a pI of 4.2–4.8. Its apparent molecular weight was determined to be about 52 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS–PAGE) and 67 kDa by size-exclusion chromatography. The enzyme had an optimum pH of 6.0 and an optimum temperature of 60 °C. Enzyme activity was slightly inhibited by 1–10 mM Co2+ and strongly inhibited by 10 mM Cu2+. It required at least two GlcNAc residues for catalysis. When (GlcNAc)6 was used as substrate, K m and V max were determined to be 1.1 mM and 54.6 μmol min?1 respectively.  相似文献   

10.
Chitin deacetylase (Cda2p) (EC 3.5.1.41) from Saccharomyces cerevisiae has been purified from vegetative cells grown in galactose and further characterized. The enzyme is a glycoprotein with an apparent molecular mass of approximately 43 kDa and a carbohydrate content of approximately 18% by weight. With glycol chitin as substrate, the optimum temperature for enzyme activity is 50 degrees C and the pH optimum is 8.0. The enzyme requires at least two N-acetyl-D-glucosamine residues (chitobiose) for catalysis and is partially inhibited by acetate. Deglycosylation of the enzyme causes total loss of enzyme activity, which can be restored by the addition of COCl(2).  相似文献   

11.
A new strain Penicillium sp. IB-37-2, which actively hydrolyzes chitosan (SD ~80–85%) but possesses low activity against colloidal chitin, was isolated. The fungus was observed to have a high level chitosanase biosynthesis (1.5–3.0 U/mL) during submerged cultivation at 28°C, with a pH of 3.5–7.0 and 220 rpm in nutrient media containing chitosan or chitin from shells of crabs. Purification of the chitosanase enzyme complex from Penicillium sp. IB-37-2 by ultrafiltration and hydrophobic chromatography, followed by denaturing electrophoresis, revealed two predominant proteins with molecular weights of 89 and 41 kDa. The purified enzyme complex demonstrated maximal activity (maximal rate of hydrolysis of dissolved chitosan) and stability at 50–55°C and a pH of 3.5–4.0. The enzyme preparation also hydrolyzed laminarin, β-(1,3)-(1,4)-glycan, and colloidal chitin. Exohydrolysis of chitosan by the preparation isolated from Penicillium sp. IB-37-2 resulted in the formation of single product, D-glucosamine.  相似文献   

12.
Chitin deacetylase (CDA) is an enzyme that catalyzes the hydrolysis of acetamine groups of N-acetyl-d-glucosamine in chitin, converting it to chitosan in fungal cell walls. In the present study, the activity in batch culture of CDA from six Mucoralean strains, two of them wild type, isolated from dung of herbivores of Northeast Brazil, was screened. Among the strains tested, Cunninghamella bertholletiae IFM 46114 showed a high intracellular enzyme activity of 0.075 U/mg protein after 5 days of culture, and a wild-type strain of Mucor circinelloides showed a high intracellular enzyme activity of 0.060 U/mg protein, with only 2 days of culture, using N-acetylchitopentaose as substrate. This enzyme showed optimal activity at pH 4.5 in 25 mM glutamate-sodium buffer at 50°C, and was stable over 1 h preincubation at the same temperature. The kinetic parameters of CDA did not follow Michaelis-Menten kinetics, but rather Hill affinity distribution, showing probable allosteric behavior. The apparent KHILL and Vmax of CDA were 288±34 nmol/l and 0.08±0.01 U mg protein–1 min–1, respectively, using N-acetylchitopentaose as substrate at pH 4.5 at 50°C.  相似文献   

13.
A novel chitin deacetylase (CDA) producing strain Penicillium oxalicum ITCC 6965 was isolated from residual materials of sea food processing industries. Strain following mutagenesis using ethidium bromide (EtBr) and microwave irradiation had resulted into a mutant P. oxalicum SAE(M)-51 having improved levels of chitin deacetylase (210.71 ± 1.65 Ul(-1)) as compared to the wild type strain (108.26 ± 1.98 Ul(-1)). Maximum enzyme production was achieved in submerged fermentation following 144 hours of incubation with notably improved productivity of 1.46 ± 0.82 Ul(-1) h(-1) as compared to the wild type strain (0.75 ± 0.53 Ul(-1)h(-1)). Scanning electron micrographs of mutant and wild type strains had revealed distinct morphological features. Evaluation of kinetic parameters viz. Q(s), Q(p), Y(p/x), Y(p/s), q(p), q(s) had denoted that strain P. oxalicum SAE(M)-51 is a hyper producer of chitin deacetylase. Glucose as compared to chitin or colloidal chitin had resulted in increased levels of enzyme production. However, replacement of glucose with chitinous substrates had prolonged the duration for enzyme production. The mutant strain had two pH optima that is 6.0 and 8.0 and had an optimum temperature of 30 °C for growth and enzyme production.  相似文献   

14.
P M Moore  J F Peberdy 《Microbios》1975,12(47-48):29-39
The enzyme chitin synthetase (UDP-acetylaminodeoxyglucosyl transferase, EC 2.4.1.16) in Cunninghamella elegans has been investigated. The enzyme was present in the microsomal, cell wall, mitochondrial and the soluble cytoplasmic fraction of the mycelium, with the former having the highest specific activity. The properties of the enzyme in this fraction were investigated; the Km for UDP GlcNAc was 1.23 mM and 2.08 mM GlcNAc in the presence of 1 mM UDP GlcNAc. The temperature optimum was between 26 degrees and 29 degrees C and maximal activity was at pH 6.25. Mg++ ions had no effect on chitin synthesis, but soluble chitodextrins inhibited the enzyme. The production of chitin synthetase was correlated with the growth of the fungus, maximum activity being found during the late exponential phase of growth. Chitin was confirmed as the sole product of enzyme action, by digestion with chitinase.  相似文献   

15.
The fungal chitin deacetylases (CDA) studied so far are able to perform heterogeneous enzymatic deacetylation on their solid substrate, but only to a limited extent. Kinetic data show that about 5-10% of the N-acetyl glucosamine residues are deacetylated rapidly. Thereafter enzymatic deacetylation is slow. In this study, chitin was exposed to various physical and chemical conditions such as heating, sonicating, grinding, derivatization and interaction with saccharides and presented as a substrate to the CDA of the fungus Absidia coerulea. None of these treatments of the substrate resulted in a more efficient enzymatic deacetylation. Dissolution of chitin in specific solvents followed by fast precipitation by changing the composition of the solvent was not successful either in making microparticles that would be more accessible to the enzyme. However, by treating chitin in this way, a decrystallized chitin with a very small particle size called superfine (SF) chitin could be obtained. This SF chitin, pretreated with 18% formic acid, appeared to be a good substrate for fungal deacetylase. This was confirmed both by enzyme-dependent deacetylation measured by acetate production as well as by isolation and assay for the degree of deacetylation (DD). In this way chitin (10% DD) was deacetylated by the enzyme into chitosan with DD of 90%. The formic acid treatment reduced the molecular weight of the polymeric chain from 2x10(5) in chitin to 1.2 x 10(4) in the chitosan product. It is concluded that nearly complete enzymatic deacetylation has been demonstrated for low-molecular chitin.  相似文献   

16.
The specific nature of the chitosanase activity of the strain Bacillus sp. 739 has been determined. Maximum enzyme activity was observed in a medium containing the biomass of the fruiting bodies of the fungus Macrolepiota procera. The chitosanase was purified to homogeneity using chromatography on DEAE-Sephadex A-50 and Toyopearl HW-50. The molecular weight of the enzyme, assessed by electrophoresis (the Laemmli procedure) approximated 46 kDa. Temperature and pH optima of the purified chitosanase were in the ranges 45-55 degrees C and 6.0-6.5, respectively. Time to half-maximum inactivation of the enzyme at 50 degrees C was equal to 1 h. With colloidal chitosan as the substrate, the value of K(M) of the purified chitosanase was equal to 25 mg/ml. The enzyme also exhibited a weak ability to hydrolyze colloidal chitin.  相似文献   

17.
When Streptomyces thermoviolaceus OPC-520 was grown in a minimal medium with 1% chitin, three activity bands corresponding to proteins of 40 kDa (Chi40), 30 kDa (Chi30), and 25 kDa (Chi25) were detected. Among them, Chi30 was purified from the culture filtrate of the strain. The molecular mass was estimated to be 30 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and its isoelectric point was 3.8. The optimum pH and temperature of Chi30 were 4.0 and 60 degrees C, respectively. Chi30 was stable at pH 6-8 up to 60 degrees C. The gene encoding Chi30 (chi30) was cloned and its nucleotides sequenced. The open reading frame of chi30 encoded a protein consisting of 347 amino acids with a calculated molecular weight of 35,621. The mature Chi30 consisted of only a catalytic domain and showed a significant similarity with ChiA from S. coelicolor and ChiA from S. lividans. The existence of a 12-bp direct repeat sequence in the promoter region of chi30 was detected, which have been suggested to be involved in both chitin induction and glucose repression.  相似文献   

18.
The halophilic archaeon Haloferax mediterranei is able to grow in a minimal medium containing ammonium acetate as a carbon and nitrogen source. When this medium is enriched with starch, alpha-amylase activity is excreted to the medium in low concentration. Here we report methods to concentrate and purify the enzyme. The relative molecular mass of the enzyme, determined by gel filtration, is 50 +/- 4 kDa, and on SDS-PAGE analysis a single band appeared at 58 kDa. These results indicated that the halophilic alpha-amylase is a monomeric enzyme. The enzyme showed a salt requirement for both stability and activity, being stable from 2 to 4 M NaCl, with maximal activity at 3 M NaCl. The enzyme displayed maximal activity at pHs from 7 to 8, and its optimal temperature was in a range from 50 degrees C to 60 degrees C. The results also implicated several prototropic groups in the catalytic reaction.  相似文献   

19.
Wang SL  Lin TY  Yen YH  Liao HF  Chen YJ 《Carbohydrate research》2006,341(15):2507-2515
Bacillus subtilis W-118, a strain that produces antifungal materials, excreted a chitinase when cultured in a medium containing shrimp- and crab-shell powder as the major carbon source. This chitinase, purified by sequential chromatography, had a molecular mass of 20,600 Da and a pI of 6. The optimum pH, optimum temperature, and pH stability of the chitinase were pH 6, 37 degrees C, and pH 5-7, respectively. The unique characteristics of the purified chitinase include low molecular mass and acidic pI. In the investigation of the inhibitory activity, it was found that the growth of Fusarium oxysporum was 100% inhibited after incubation for 1 day with sterilized W-118 chitinase solution (5.6 units/mL). The chitinase hydrolyzates of chitin with low degrees of polymerization (DP 1-6) were analyzed by HPLC. Longer reaction times led to the generation of chitin oligosaccharides with lower DP. The chitin oligosaccharides were examined for their inhibitory effects on F. oxysporum and human leukemia cell lines.  相似文献   

20.
The chitin deacetylase gene from Colletotrichum lindemuthianum UPS9 was isolated and cloned in Pichia pastoris as a tagged protein with six added terminal histidine residues. The expressed enzyme was recovered from the culture supernatant and further characterized. A single-step purification based on specific binding of the histidine residues was achieved. The purified enzyme has a molecular mass of 25 kDa and is not glycosylated as determined by mass spectrometry. The activity of the recombinant chitin deacetylase on chitinous substrates was investigated. With chitotetraose as substrate, the optimum temperature and pH for enzyme activity are 60 degrees C and 8.0, respectively. The specific activity of the pure protein is 72 U/mg. One unit of enzyme activity is defined as the amount of enzyme that produces 1 micromol of acetate per minute under the assay conditions employed. The enzyme activity is enhanced in the presence of Co2+ ions. A possible use of the recombinant chitin deacetylase for large-scale biocatalytic conversion of chitin to chitosan is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号