首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Matrix vesicles (MVs) are involved in the initial step of mineralization in skeletal tissues and provide an easily model to analyze the hydroxyapatite (HA) formation. Sr stimulates bone formation and its effect was tested on MVs. Sr2+ (15-50 μM) in the mineralization medium containing MVs, 2 mM Ca2+ and 3.42 mM Pi, retarded HA formation. Sr2+ (1-5 mM) in the same medium-induced other types of mineral than HA and cancelled the ATP-, ADP- or PPi-induced retardation in the mineral formation. Our findings suggest that the beneficial effect of Sr2+ at a low dose (15-50 μM) is rather an inhibitor of bone resorption than an activator of mineral formation, while at high Sr2+ concentration (1-5 mM), mineral formation, especially other types of mineral than HA, is favored.  相似文献   

2.
The effects of sinomenine (SIN, an alkaloid extracted from the Chinese medicinal plant Sinomenium acutum used for centuries to treat rheumatic disease, including rheumatoid arthritis) on apatitic nucleation and matrix vesicle (MV)-induced mineral formation were compared with those of cysteine, levamisole, and theophylline. We found that SIN was not an inhibitor of tissue non-specific alkaline phosphatase (TNAP), a marker of biological mineralization, but confirmed that cysteine, levamisole, and theophylline were. Further, none of these four molecules directly affected the nucleation of hydroxyapatite (HA) formation, in contrast to pyrophosphate (PPi) which did. Incubation of 0.25-1.0 mM cysteine, theophylline, or levamisole with MVs in synthetic cartilage lymph (SCL) containing AMP and Ca2+, but not inorganic phosphate (Pi), prolonged the induction time of mineral formation, apparently by inhibiting TNAP activity. SIN at the same levels neither inhibited TNAP activity nor affected the induction time of MV mineral formation. However, SIN did markedly delay MV-induced mineral formation in SCL containing Pi (instead of AMP) in a manner similar to theophylline, but to a lesser extent than levamisole. Cysteine did not delay, in fact it slightly accelerated MV-induced mineral formation in Pi-containing SCL. These findings suggest that levamisole, SIN and theophylline may directly affect Ca2+ and/or Pi accretion during mineral formation; however, TNAP was not directly involved. The possible roles of annexins and other ion transporters, such as proteins of the solute carrier family implicated in Ca2+ and Pi influx are discussed.  相似文献   

3.
It was found that CDP-choline was formed with good yield from 5′-CMP and choline phosphate or choline chloride by yeast cells. The effects of pyrophosphate (PPi) on the formation of UDPG, GDPM and CDP-choline from respective nucleoside monophosphate by yeast cells were studied. By the addition of PPi to the reaction mixture, the phosphorylation of G-6-P from glucose was inhibited and then the phosphorylation of nucleoside monophosphates was restrained. Such inhibition was reversed by the decomposition of PPi by inorganic pyrophosphatase of yeast cells. The addition of PPi after the formation of nucleotide derivatives caused the accumulation of UTP and GTP and molar yields from nucleotide as substrate was about 80%. But that of CTP was a little in the reaction system of CDP-choline synthesis. Further, this method seems to be suitable for the accumulation of sugar-1-phosphates.  相似文献   

4.
Proteomic analysis of matrix vesicles (MVs) isolated from 17-day-old chicken embryo femurs revealed the presence of creatine kinase. In this report we identified the enzyme functionally and suggest that the enzyme may participate in the synthesis of ATP from ADP and phosphocreatine within the lumen of these organelles. Then, ATP is converted by nucleotide hydrolyzing enzymes such as Na+, K+-ATPase, protein kinase C, or alkaline phosphatase to yield inorganic phosphate (Pi), a substrate for mineralization. Alternatively, ATP can be hydrolyzed by a nucleoside triphosphate pyrophosphatase phosphodiesterase 1 producing inorganic pyrophosphate (PPi), a mineralization inhibitor. In addition, immunochemical evidence indicated that VDAC 2 is present in MVs that may serve as a transporter of nucleotides from the extracellular matrix. We discussed the implications of ATP production and hydrolysis by MVs as regulatory mechanisms for mineralization.  相似文献   

5.
The ectonucleoside pyrophosphatase phosphodiesterase 1 (NPP1/PC-1) is a member of the NPP enzyme family that is critical in regulating mineralization. In certain mineralizing sites of bone and cartilage, membrane-limited vesicles [matrix vesicles (MVs)] provide a sheltered internal environment for nucleation of calcium-containing crystals, including hydroxyapatite. MV formation occurs by budding of vesicles from the plasma membrane of mineralizing cells. The MVs are enriched in proteins that promote mineralization. Paradoxically, NPP1, the type II transmembrane protein that generates the potent hydroxyapatite crystal growth inhibitor inorganic pyrophosphate (PPi), is also enriched in MVs. Although osteoblasts express NPP1, NPP2, and NPP3, only NPP1 is enriched in MVs. Therefore, this study uses mineralizing human osteoblastic SaOS-2 cells, a panel of NPP1 mutants, and NPP1 chimeras with NPP3, which does not concentrate in MVs, to investigate how NPP1 preferentially targets to MVs. We demonstrated that a cytosolic dileucine motif (amino acids 49–50) was critical in localizing NPP1 to regions of the plasma membrane that budded off into MVs. Moreover, transposition of the NPP1 cytoplasmic dileucine motif and flanking region (AAASLLAP) to NPP3 conferred to NPP3 the ability to target to the plasma membrane and, subsequently, concentrate in MVs. Functionally, the cytosolic tail dileucine motif NPP1 mutants lost the ability to support MV PPi concentrations and to suppress calcification. The results identify a specific targeting motif in the NPP1 cytosolic tail that delivers PPi-generating NPP activity to osteoblast MVs for control of calcification. calcification; dileucine motif; NPP3  相似文献   

6.
Entamoeba histolytica, an amitochondriate protozoan parasite that relies on glycolysis as a key pathway for ATP generation, has developed a unique extended PPi-dependent glycolytic pathway in which ADP-forming acetyl-coenzyme A (CoA) synthetase (ACD; acetate:CoA ligase [ADP-forming]; EC 6.2.1.13) converts acetyl-CoA to acetate to produce additional ATP and recycle CoA. We characterized the recombinant E. histolytica ACD and found that the enzyme is bidirectional, allowing it to potentially play a role in ATP production or in utilization of acetate. In the acetate-forming direction, acetyl-CoA was the preferred substrate and propionyl-CoA was used with lower efficiency. In the acetyl-CoA-forming direction, acetate was the preferred substrate, with a lower efficiency observed with propionate. The enzyme can utilize both ADP/ATP and GDP/GTP in the respective directions of the reaction. ATP and PPi were found to inhibit the acetate-forming direction of the reaction, with 50% inhibitory concentrations of 0.81 ± 0.17 mM (mean ± standard deviation) and 0.75 ± 0.20 mM, respectively, which are both in the range of their physiological concentrations. ATP and PPi displayed mixed inhibition versus each of the three substrates, acetyl-CoA, ADP, and phosphate. This is the first example of regulation of ACD enzymatic activity, and possible roles for this regulation are discussed.  相似文献   

7.
The effect of pyrophosphate (PPi) on labeled nucleotide incorporation into noncatalytic sites of chloroplast ATP synthase was studied. In illuminated thylakoid membranes, PPi competed with nucleotides for binding to noncatalytic sites. In the dark, PPi was capable of tight binding to noncatalytic sites previously vacated by endogenous nucleotides, thereby preventing their subsequent interaction with ADP and ATP. The effect of PPi on ATP hydrolysis kinetics was also elucidated. In the dark at micromolar ATP concentrations, PPi inhibited ATPase activity of ATP synthase. Addition of PPi to the reaction mixture at the step of preliminary illumination inhibited high initial activity of the enzyme, but stimulated its activity during prolonged incubation. These results indicate that the stimulating effect of PPi light preincubation with thylakoid membranes on ATPase activity is caused by its binding to ATP synthase noncatalytic sites. The inhibition of ATP synthase results from competition between PPi and ATP for binding to catalytic sites. Published in Russian in Biokhimiya, 2009, Vol. 74, No. 7, pp. 956–962.  相似文献   

8.
The guanylate cyclase reaction was studied to determine the identity of the product(s) formed other than guanosine-3′,5′-monophosphate (cyclic GMP). Partially purified guanylate cyclase preparations from rat lung catalyzed the formation of nearly equal amounts of PP1 and of cyclic GMP from GTP. Column chromatography of the enzyme preparation on DEAE-Sephadex or Bio-Gel A-5m failed to separate the enzyme(s) involved in formation of cyclic GMP and of PP1. Nucleotide inhibitors of cyclic GMP formation also inhibited PP1 formation, and Ca2+, a stimulant of cyclic GMP formation in the presence of Mn2+, also stimulated PP1 formation. Detectable PP1 formation was not observed when ATP was present instead of GTP.The results show that guanylate cyclase, in vitro, catalyzes the formation of pyrophosphate from GTP concomitant with the synthesis of cyclic GMP.  相似文献   

9.
《BBA》1986,851(2):276-282
Photosynthetic formation of inorganic pyrophosphate (PPi) in Rhodospirillum rubrum chromatophores has been studied utilizing a new and sensitive method for continuous monitoring of PPi synthesis. Studies of the reaction kinetics under a variety of conditions, e.g., at different substrate concentrations and different electron-transport rates, have been performed. At very low light intensities the rate of PPi synthesis is twice the rate of ATP synthesis. Antimycin A, at a concentration which strongly inhibited the photosynthetic ATP formation, inhibited the PPi synthesis much less. Even at low rates of electron transport a significant rate of PPi synthesis is obtained. The rate of photosynthetic ATP formation is stimulated up to 20% when PPi synthesis is inhibited. It is shown that PPi synthesis and ATP synthesis compete with each other. No inhibition of pyrophosphatase activity is observed at high carbonyl cyanide p-trifluoromethoxyhydrazone concentration while ATPase activity is strongly inhibited under the same conditions.  相似文献   

10.
Mizuho Komatsu  Satoru Murakami 《BBA》1976,423(1):103-110
ATP and pyrophosphate at high concentration (> 1 mM) inhibited photophosphorylation of isolated spinach chloroplasts in the normal salt medium and did not cause stimulation of electron transport. The inhibition of photophosphorylation by ATP or pyrophosphate was shown to be abolished by the addition of excess MgCl2, ADP and phosphate. It has been demonstrated that the rates of photophosphorylation in the absence and presence of ATP or pyrophosphate are determined similarly by the concentrations of magnesium-ADP (Mg · ADP?) and magnesium-phosphate (Mg · Pi) complexes.It is highly probable that Mg · ADP? and Mg · Pi, but not free ADP and free phosphate, are the active form of the substrates of photophosphorylation. This is in support of the view that ATP inhibits photophosphorylation by decreasing the concentration of Mg2+ which is available for the formation of the complex with ADP and phosphate.  相似文献   

11.
An enzyme from Entamoeba histolytica catalyzes the formation of acetyl phosphate and orthophosphate from acetate and inorganic pyrophosphate (PPi), but it displays much greater activity in the direction of acetate formation. It has been purified 40-fold and separated from interfering enzyme activities by chromatography. Its reaction products have been quantitatively established. ATP cannot replace PPi as phosphoryl donor in the direction of acetyl phosphate formation nor will any common nucleoside diphosphate replace orthophosphate as phosphoryl acceptor in the direction of acetate formation. The trivial name proposed for the new enzyme is acetate kinase (PPi).  相似文献   

12.
The catabolism of ATP and other nucleotides participates partly in the important function of nucleotide salvage by activated cells and also in removal or de novo generation of compounds including ATP, ADP, and adenosine that stimulate purinergic signaling. Seven nucleotide pyrophosphatase/phosphodiesterase NPP family members have been identified to date. These isoenzymes, related by up conservation of catalytic domains and certain other modular domains, exert generally non-redundant functions via distinctions in substrates and/or cellular localization. But they share the capacity to hydrolyze phosphodiester or pyrophosphate bonds, though generally acting on distinct substrates that include nucleoside triphosphates, lysophospholipids and choline phosphate esters. PPi generation from nucleoside triphosphates, catalyzed by NPP1 in tissues including cartilage, bone, and artery media smooth muscle cells, supports normal tissue extracellular PPi levels. Balance in PPi generation relative to PPi degradation by pyrophosphatases holds extracellular PPi levels in check. Moreover, physiologic levels of extracellular PPi suppress hydroxyapatite crystal growth, but concurrently providing a reservoir for generation of pro-mineralizing Pi. Extracellular PPi levels must be supported by cells in mineralization-competent tissues to prevent pathologic calcification. This support mechanism becomes dysregulated in aging cartilage, where extracellular PPi excess, mediated in part by upregulated NPP1 expression stimulates calcification. PPi generated by NPP1modulates not only hydroxyapatite crystal growth but also chondrogenesis and expression of the mineralization regulator osteopontin. This review pays particular attention to the role of NPP1-catalyzed PPi generation in the pathogenesis of certain disorders associated with pathologic calcification.  相似文献   

13.
A microprocedure for the colorimetric determination of inorganic pyrophosphate (PPi) in the presence or absence of orthophosphate (Pi) has been developed. PPi is estimated quantitatively as the amount of chromophore formed with molybdate reagent, 1-amino-2-naphthol-4-sulfonic acid in bisulfite and thiol reagent (monothioglycerol or 2-mercaptoethanol). The latter is obligatory for color formation. Pi is estimated without thiol reagent. The two chromophores differ in absorption spectra, the greatest difference being at 580 nm. For both, color develops fully by 10 min and is stable up to 1 hr. Just less than 0.4 μm PPi can be detemined. The extinction coefficients are 2.70 × 104 and 8.76 × 103 for PPi and Pi, respectively, both with thiol reagent present, and 2.77 × 103 for Pi with no thiol reagent.A ten-fold excess of Pi does not interfere with the determination of PPi and in fact can be estimated in the same mixture. A 15-fold excess, however, diminishes the accuracy of PPi estimations. Trichloroacetic acid and sodium fluoride inhibi color formation, but this inhibition is overcome by the addition of sodium acetate buffer, pH 4.0. Nucleoside triphosphates and adenosine 3′:5′-cyclic monophosphate are stable in the reaction mixture.The method was tested in assays of Escherichia coli DNA-dependent RNA polymerase (nucleoside triphosphate: RNA nucleotidyltransferase, EC 2.7.7.6). Progress curves measured by either the rate of PPi formation or the rate of synthesis of labeled RNA were very similar. Product PPi formed by as little as 0.6 unit of RNA polymerase in a 225-μl incubation medium could be measured.An automated version of the method was devised which allows accurate determination of PPi down to 1 μm (without range expander attachment) at a sampling rate of 20–40 tubes/hr.  相似文献   

14.
The efflux of mitochondrial adenine nucleotide which is induced by addition of PPi to suspensions of rat liver mitochondria has been investigated. This efflux of adenine nucleotide is greatly stimulated by the uncoupler FCCP at 1 μM, Vmax being 6.7 nmol/min per mg protein as compared to 2.0 nmol/min per mg protein in its absence. The depletion process is inhibited by carboxyatractyloside. The Km for PPi of 1.25 mM is essentially unchanged when uncoupler is added. Quantitation of the individual adenine nucleotide species (ATP, ADP and AMP) and their relationship to the rate of efflux suggests that ADP is the predominant species being exchanged for PPi.  相似文献   

15.
16.
《FEBS letters》1987,224(2):348-352
It is possible to obtain synthesis of PPi by artifical ion potentials in Rhodospirillum rubrum chromatophores. PPi can be formed by K+-diffusion gradients (Δψ), H+ gradients (ΔpH) or a combination of both. In contrast, ATP can only be synthesized by imposed Δψ or Δψ+ΔpH. For ATP formation there is also a threshold value of K+ concentration below which synthesis of ATP is not possible. Such a threshold is not found for PPi formation. Both PPi and ATP syntheses are abolished by addition of FCCP or nigericin and only marginally affected by electron transport inhibitors. The synthesis of PPi can be monitored for several minutes before it ceases, while ATP production stops within 30 s. As a result the maximal yield of PPi is 200 nmol PPi/μmol BChl, while that of ATP is no more than 25 nmol ATP/μmol BChl. The initial rates of syntheses were 0.50 μmol PPi/μmol BChl per min and 2.0 μmol ATP/μmol per min, respectively. These rates are approx. 50 and 20% of the respective photophosphorylation rates under saturating illumination.  相似文献   

17.
Plant vacuolar H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1) utilizes inorganic pyrophosphate (PPi) as an energy source to generate a H+ gradient potential for the secondary transport of ions and metabolites across the vacuole membrane. In this study, functional roles of arginine residues in mung bean V-PPase were determined by site-directed mutagenesis. Alignment of amino-acid sequence of K+-dependent V-PPases from several organisms showed that 11 of all 15 arginine residues were highly conserved. Arginine residues were individually substituted by alanine residues to produce R → A-substituted V-PPases, which were then heterologously expressed in yeast. The characteristics of mutant variants were subsequently scrutinized. As a result, most R → A-substituted V-PPases exhibited similar enzymatic activities to the wild-type with exception that R242A, R523A, and R609A mutants markedly lost their abilities of PPi hydrolysis and associated H+-translocation. Moreover, mutation on these three arginines altered the optimal pH and significantly reduced K+-stimulation for enzymatic activities, implying a conformational change or a modification in enzymatic reaction upon substitution. In particular, R242A performed striking resistance to specific arginine-modifiers, 2,3-butanedione and phenylglyoxal, revealing that Arg242 is most likely the primary target residue for these two reagents. The mutation at Arg242 also removed F inhibition that is presumably derived from the interfering in the formation of substrate complex Mg2+-PPi. Our results suggest accordingly that active pocket of V-PPase probably contains the essential Arg242 which is embedded in a more hydrophobic environment.  相似文献   

18.
In this paper we report studies on photosynthetic formation of inorganic pyrophosphate (PPi) in three phototrophic bacteria. Formation of PPi was found in chromatophores from Rhodopseudomonas viridis but not in chromatophores from Rhodopseudomonas blastica and Rhodobacter capsulatus. The maximal rate of PPi synthesis in Rps. viridis was 0.15 mol PPi formed/(min*mol Bacteriochlorophyll) at 23°C. The synthesis of PPi was inhibited by electron transport inhibitors, uncouplers and fluoride, but was insensitive to oligomycin and venturicidin. The steady state rate of PPi synthesis under continuous illumination was about 15% of the steady-state rate of ATP synthesis. The synthesis of PPi after short light flashes was also studied. The yield of PPi after a single 1 ms flash was equivalent to approximately 1 mol PPi/500 mol Bacteriochlorophyll. In Rps. viridis chromatophores, PPi was also found to induce a membrane potential, which was sensitive to carbonyl cyanide p-trifluoromethoxyphenylhydrazone and NaF.Abbreviations BChl Bacteriochlorophyll - F0F1-ATPase Membrane bound proton translocating ATP synthase - FCCP Carbonyl cyanide p-trifluoromethoxyphenylhydrazone - H+-PPase Membrane bound proton translocating PPi synthase - TPP+ Tetraphenyl phosphonium ion - TPB- Tetraphenyl boron ion - Transmembrane electrical potential difference  相似文献   

19.
Although the capacity of isolated β-subunits of the ATP synthase/ATPase to perform catalysis has been extensively studied, the results have not conclusively shown that the subunits are catalytically active. Since soluble F1 of mitochondrial H+-ATPase can bind inorganic pyrophosphate (PPi) and synthesize PPi from medium phosphate, we examined if purified His-tagged β-subunits from Thermophilic bacillus PS3 can hydrolyze PPi. The difference spectra in the near UV CD of β-subunits with and without PPi show that PPi binds to the subunits. Other studies show that β-subunits hydrolyze [32P] PPi through a Mg2+-dependent process with an optimal pH of 8.3. Free Mg2+ is required for maximal hydrolytic rates. The Km for PPi is 75 μM and the Vmax is 800 pmol/min/mg. ATP is a weak inhibitor of the reaction, it diminishes the Vmax and increases the Km for PPi. Thus, isolated β-subunits are catalytically competent with PPi as substrate; apparently, the assembly of β-subunits into the ATPase complex changes substrate specificity, and leads to an increase in catalytic rates.  相似文献   

20.
High activities of ATP sulfurylase were found in the soluble protein fraction of two Chlorobium limicola strains, whereas ADP sulfurylase was absent. ATP sulfurylase was partially purified and characterized. It was a stable soluble enzyme with a molecular weight of 230,000, buffer-dependent pH optima at 8.6 and 7.2 and an isoelectric point at pH 4.8. No physiological inhibitor was found. Inhibition was observed with p-CMB and heavy metals. Sulfur compounds had no effect on enzyme activity. The stoichiometry of the reaction was proven. In contrast, an ADP sulfurylase, but no ATP sulfurylase, was found in Chlorobium vibrioforme. This enzyme was very labile with a molecular weight of about 120,000 and buffer-dependent pH optima at 9.0 and 8.5. Under test conditions the apparent K m value was determined to be 0.28 mM for adenylyl sulfate and 8.0 mM for phosphate.Abbreviations APS adenylyl sulfate - p-CMB parachloromercuribenzoate - PPi inorganic pyrophosphate  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号