首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tau protein, the major constituent of paired helical filaments in Alzheimer's disease, belongs to the intrinsically disordered proteins (IDPs). IDPs are an emerging group in the protein kingdom characterized by the absence of a rigid three-dimensional structure. Disordered proteins usually acquire a "functional fold" upon binding to their interaction partner(s). This property of IDPs implies the need for innovative approaches to measure their binding affinity. We have mapped and measured the Alzheimer's-disease-associated epitope on intrinsically disordered tau protein with a novel two-step sandwich competitive enzyme-linked immunosorbent assay (ELISA). This approach allowed us to determine the binding affinity of disordered tau protein in liquid phase without any disturbance to the competitive equilibrium and without any need for covalent or noncovalent modification of tau protein. Furthermore, the global fitting method, used for the reconstruction of tau binding curves, significantly improved the assay readout. The proposed novel competitive ELISA allowed us to determine the changes in the standard Gibbs energy of binding, thus enabling measurement of tau protein conformation in the core of paired helical filaments. IDP competitive ELISA results showed, for the first time, that the tau protein C terminus of the Alzheimer's-disease-derived paired helical filaments core subunit adopts beta-turn type I' fold and is accessible from solution.  相似文献   

2.
The tau protein belongs to the category of intrinsically disordered proteins, which in their native state do not have an average stable structure and fluctuate between many conformations. In its physiological state, tau helps nucleating and stabilising the microtubules in the axons of the neurons. On the other hand, the same tau is involved in the development of Alzheimer disease, when it aggregates in paired helical filaments forming fibrils, which form insoluble tangles. The beginning of the pathological aggregation of tau has been attributed to a local transition of protein portions from random coil to a β-sheet. These structures would very likely be transient; therefore, we performed a molecular dynamics simulation of tau to gather information on the existence of segments of tau endowed with a secondary structure. We combined the results of our simulation with small-angle X-ray scattering experimental data to extract from the dynamics a set of most probable conformations of tau. The analysis of these conformations highlights the presence of transient secondary structures such as turns, β-bridges, β-sheets and α-helices. It also shows that a large segment of the N-terminal region is found near the repeats domain in a globular-like shape.  相似文献   

3.
An intrinsically disordered protein (IDP) does not have a definite 3D structure, and because of its highly flexible nature it evolves dynamically in very large and diverse regions of the phase space. A standard molecular dynamics run can sample only a limited region of the latter; even though this kind of simulation may be effective in sampling local temporary secondary structures, it is not sufficient to highlight properties that require a larger sampling of the phase space to be detected, like transient tertiary structures. But if the structure of an IDP is dynamically evolved using metadynamics (an algorithm that keeps track of the regions of the phase space already sampled), the system can be forced to wander in a much larger region of the phase space. We have applied this procedure to the simulation of tau, one of the largest totally disordered proteins. Combining the results of the simulation with small-angle X-ray scattering yields a significant improvement in the sampling of the phase space in comparison with standard molecular dynamics, and provides evidence of extended hairpin- and paperclip-like transient tertiary structures of the molecule. The more persistent tertiary pattern is a hairpin folding encompassing part of the N-terminal, the proline-rich domain, the former repeat and a functionally relevant part of the second repeat.  相似文献   

4.
Dehydration proteins (Dehydrins) are expressed during dehydration stress in plants and are thought to protect plant proteins and membranes from the loss of water during drought and at cold temperatures. Several different dehydrins have been shown to protect lactate dehydrogenase (LDH) from damage from being frozen and thawed. We show here that a 48 residue K2 dehydrin from Vitis riparia protects LDH more effectively than bovine serum albumin, a protein with known cryoprotective function. Light scattering and 8‐anilino‐1‐naphthalene sulfonate fluorescence experiments show that dehydrins prevent aggregation and unfolding of the enzyme. The cryoprotective effects of LDH are reduced by the addition of salt, suggesting that the positively charged K‐segments are attracted to a negatively charged surface but this does not result in binding. Overall K2 is an intrinsically disordered protein; nuclear magnetic resonance relaxation experiments indicate that the two‐terminal, Lys‐rich K‐segments show a weak propensity for α‐helicity and are flexible, and that the central, polar rich phi‐segment has no secondary structure preference and is highly flexible. We propose that the phi‐segments in dehydrins are important for maintaining the disordered structure so that the protein can act as a molecular shield to prevent partially denatured proteins from interacting with one another, whereas the K‐segments may help to localize the dehydrin near the enzyme surface.  相似文献   

5.
《FEBS letters》2014,588(24):4583-4589
Polyglutamine tract-binding protein 1 (PQBP1) is an intrinsically disordered protein abundantly expressed in the brain. Mutations in the PQBP1 gene are causative for X-linked mental retardation disorders. Here, we investigated the structure of the C-terminal segment within the context of full-length PQBP1. We produced a segmentally isotope-labeled PQBP1 composed of a non-labeled segment (residues 1–219; N-segment) and a 13C/15N-labeled segment (residues 220–265; C-segment). Our results demonstrate that the segmental isotope-labeling combined with NMR spectroscopy is useful for detecting a very weak intra-molecular interaction in an intrinsically disordered protein.  相似文献   

6.
7.
Fish otoliths composed of calcium carbonate and an organic matrix play a primary role in gravity sensing and the perception of sound. Starmaker (Stm) was the first protein found to be capable of influencing the process of biomineralization of otoliths. Stm dictates the shape, size, and selection of calcium carbonate polymorphs in a concentration-dependent manner. To facilitate exploration of the molecular basis of Stm function, we have developed and optimized a protocol for efficient expression and purification of the homogeneous nontagged Stm. The homogeneous nontagged Stm corresponds to its functional form, which is devoid of a signal peptide. A comprehensive biochemical and biophysical analysis of recombinant Stm, along with in silico examinations, indicate for the first time that Stm exhibits the properties of intrinsically disordered proteins. The functional significance of Stm having intrinsically disordered protein properties and its possible role in controlling the formation of otoliths is discussed.  相似文献   

8.
Natively unfolded or intrinsically disordered proteins (IDPs) are under intense scrutiny due to their involvement in both normal biological functions and abnormal protein misfolding disorders. Polypeptide chain collapse of amyloidogenic IDPs is believed to play a key role in protein misfolding, oligomerization, and aggregation leading to amyloid fibril formation, which is implicated in a number of human diseases. In this work, we used bovine κ-casein, which serves as an archetypal model protein for amyloidogenic IDPs. Using a variety of biophysical tools involving both prediction and spectroscopic techniques, we first established that monomeric κ-casein adopts a collapsed premolten-globule-like conformational ensemble under physiological conditions. Our time-resolved fluorescence and light-scattering data indicate a change in the mean hydrodynamic radius from ∼4.6 nm to ∼1.9 nm upon chain collapse. We then took the advantage of two cysteines separated by 77 amino-acid residues and covalently labeled them using thiol-reactive pyrene maleimide. This dual-labeled protein demonstrated a strong excimer formation upon renaturation from urea- and acid-denatured states under both equilibrium and kinetic conditions, providing compelling evidence of polypeptide chain collapse under physiological conditions. The implication of the IDP chain collapse in protein aggregation and amyloid formation is also discussed.  相似文献   

9.
The major constituent of Alzheimer's disease paired helical filaments (PHF) core is intrinsically disordered protein (IDP) tau. In spite of a considerable effort, insoluble character of PHF together with inherent physical properties of IDP tau have precluded so far reconstruction of PHF 3D structure by X-ray crystallography or NMR spectroscopy. Here we present first crystallographic study of PHF core C-terminus. Using monoclonal antibody MN423 specific to the tertiary structure of the PHF core, the in vivo PHF structure was imprinted into recombinant core PHF tau. Crystallization of the complex led to determination of the structure of the core PHF tau protein fragment 386TDHGAE391 at 1.65A resolution. Structural analysis suggests important role of the core PHF C-terminus for PHF assembly. It is reasonable to expect that this approach will help to reveal the structural principles underlying the tau protein assembly into PHF and possibly will facilitate rationale drug design for inhibition of Alzheimer neurofibrillary changes.  相似文献   

10.
Central nervous system myelin is a dynamic entity arising from membrane processes extended from oligodendrocytes, which form a tightly-wrapped multilamellar structure around neurons. In mature myelin, the predominant splice isoform of classic MBP is 18.5 kDa. In solution, MBP is an extended, intrinsically disordered protein with a large effective protein surface for myriad interactions, and possesses transient and/or induced ordered secondary structure elements for molecular association or recognition. Here, we show by nanopore analysis that the divalent cations copper and zinc induce a compaction of the extended protein in vitro, suggestive of a tertiary conformation that may reflect its arrangement in myelin.  相似文献   

11.
The C-terminal domain (CTD) of tumour suppressor p53 is an intrinsically disordered protein which has been shown to be able to bind multiple partner proteins and exercise diverse physiological functions in the cell. In this study, we performed molecular dynamics simulations on the isolated p53 CTD, as well as three regulatory binding complexes to investigate the conformational ensemble of isolated p53 CTD and its dynamic structures when different binding partner present. The results demonstrate that the isolated p53 CTD resembles a molten globule rather than extended structure. It mainly adopts random coil conformations with some tendency to form helical structures, which is consistent with experimental observations. For isolated p53 CTD, the dynamics is exclusively dominated by the intrinsic free energy and the p53 CTD could not folded spontaneously to each binding competent state which is located in high free energy region. However, when the binding partners present, the dynamics of p53 CTD are dominated by two mechanisms, the p53 CTD tending to adopt the structure with minimum free energy as isolate existed and the binding energy from partner protein tending to minimum. Each of them has an extreme tendency and corresponds to a possible characteristic state, the random coil state and each binding competent state. The compromise in competition between these two mechanisms results in alternate realisation of different characteristic states, while the relative strength of each mechanism determines the sampling frequency of each characteristic state.  相似文献   

12.
13.
The conformational characterization of intrinsically disordered proteins (IDPs) is complicated by their conformational heterogeneity and flexibility. If an IDP could somehow be divided into smaller fragments and reconstructed later, theoretical and spectroscopic studies could probe its conformational variability in detail. Here, we used replica molecular-dynamics simulations and network theory to explore whether such a divide-and-conquer strategy is feasible for α-synuclein, a prototypical IDP. We characterized the conformational variability of α-synuclein by conducting >100 unbiased all-atom molecular-dynamics simulations, for a total of >10 μs of trajectories. In these simulations, α-synuclein formed a heterogeneous ensemble of collapsed coil states in an aqueous environment. These states were stabilized by heterogeneous contacts between sequentially distant regions. We find that α-synuclein contains residual secondary structures in the collapsed states, and the heterogeneity in the collapsed state makes it feasible to split α-synuclein into sequentially contiguous minimally interacting fragments. This study reveals previously unknown characteristics of α-synuclein and provides a new (to our knowledge) approach for studying other IDPs.  相似文献   

14.
15.
16.
Dehydrins are intrinsically disordered plant proteins whose expression is upregulated under conditions of desiccation and cold stress. Their molecular function in ensuring plant survival is not yet known, but several studies suggest their involvement in membrane stabilization. The dehydrins are characterized by a broad repertoire of conserved and repetitive sequences, out of which the archetypical K-segment has been implicated in membrane binding. To elucidate the molecular mechanism of these K-segments, we examined the interaction between lipid membranes and a dehydrin with a basic functional sequence composition: Lti30, comprising only K-segments. Our results show that Lti30 interacts electrostatically with vesicles of both zwitterionic (phosphatidyl choline) and negatively charged phospholipids (phosphatidyl glycerol, phosphatidyl serine, and phosphatidic acid) with a stronger binding to membranes with high negative surface potential. The membrane interaction lowers the temperature of the main lipid phase transition, consistent with Lti30's proposed role in cold tolerance. Moreover, the membrane binding promotes the assembly of lipid vesicles into large and easily distinguishable aggregates. Using these aggregates as binding markers, we identify three factors that regulate the lipid interaction of Lti30 in vitro: (1) a pH dependent His on/off switch, (2) phosphorylation by protein kinase C, and (3) reversal of membrane binding by proteolytic digest.  相似文献   

17.
Selenocysteine (Sec) is co-translationally incorporated into selenoproteins at a reprogrammed UGA codon. In mammals, this requires a dedicated machinery comprising a stem-loop structure in the 3′ UTR RNA (the SECIS element) and the specific SECIS Binding Protein 2. In this report, disorder-prediction methods and several biophysical techniques showed that ca. 70% of the SBP2 sequence is disordered, whereas the RNA binding domain appears to be folded and functional. These results are consistent with a recent report on the role of the Hsp90 chaperone for the folding of SBP2 and other functionally unrelated proteins bearing an RNA binding domain homologous to SBP2.  相似文献   

18.
Intrinsically disordered proteins (IDPs) lack a well-defined three-dimensional structure under physiological conditions. Intrinsic disorder is a common phenomenon, particularly in multicellular eukaryotes, and is responsible for important protein functions including regulation and signaling. Many disease-related proteins are likely to be intrinsically disordered or to have disordered regions. In this paper, a new predictor model based on the Bayesian classification methodology is introduced to predict for a given protein or protein region if it is intrinsically disordered or ordered using only its primary sequence. The method allows to incorporate length-dependent amino acid compositional differences of disordered regions by including separate statistical representations for short, middle and long disordered regions. The predictor was trained on the constructed data set of protein regions with known structural properties. In a Jack-knife test, the predictor achieved the sensitivity of 89.2% for disordered and 81.4% for ordered regions. Our method outperformed several reported predictors when evaluated on the previously published data set of Prilusky et al. [2005. FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21 (16), 3435-3438]. Further strength of our approach is the ease of implementation.  相似文献   

19.
More than 60 prediction methods for intrinsically disordered proteins (IDPs) have been developed over the years, many of which are accessible on the World Wide Web. Nearly, all of these predictors give balanced accuracies in the ~65%–~80% range. Since predictors are not perfect, further studies are required to uncover the role of amino acid residues in native IDP as compared to predicted IDP regions. In the present work, we make use of sequences of 100% predicted IDP regions, false positive disorder predictions, and experimentally determined IDP regions to distinguish the characteristics of native versus predicted IDP regions. A higher occurrence of asparagine is observed in sequences of native IDP regions but not in sequences of false positive predictions of IDP regions. The occurrences of certain combinations of amino acids at the pentapeptide level provide a distinguishing feature in the IDPs with respect to globular proteins. The distinguishing features presented in this paper provide insights into the sequence fingerprints of amino acid residues in experimentally determined as compared to predicted IDP regions. These observations and additional work along these lines should enable the development of improvements in the accuracy of disorder prediction algorithm.  相似文献   

20.
《FEBS letters》2014,588(9):1839-1849
The RelA/SpoT enzyme produces (p)ppGpp that helps the bacterium survive during stress. The domains present in it are interspersed with connecting linkers whose functions have been poorly elucidated. We rationally analyzed the sequence and structural property of the regulatory C-terminal region in the Rel family of proteins and report the presence of an intrinsically disordered region between two successive domains in this region that are separated by a defined amino acid sequence length. We show that the length and secondary structure of this linker are conserved in Rel proteins, further signifying its importance in rendering flexibility for domain movement and domain–domain interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号