首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 2 毫秒
1.
Native supercoiled and nicked ColE1 DNA were examined using laser Raman spectroscopy. ColE1 contains 6646 base pairs (bp) and, when supercoiled, approximately 47 negative supercoils. An analytical buoyant density gradient centrifugation technique developed by Burke and Bauer was scaled to preparative quantities, and used to isolate the supercoiled plasmid fraction from its nicked counterpart. This procedure allowed enriched fractions of the supercoiled plasmid to be extracted without the use of the optical contaminant ethidium bromide. The intensities of several Raman bands were altered between the spectra of the two topological forms. Notably absent were any changes in bands arising from cytosine and guanine vibrations. The observed changes are interpreted in terms of the polymorphic structures which have been observed in many DNA structural studies. The results of this study suggest that accommodation of supercoiling takes place chiefly in A-T base pairs and backbone moieties, without substantial modification of G-C base-pair structure. Premelting effects may account for the observed changes, including a slight shift to lower frequency of a band known to be responsive to base-pair disruption. Heteronomous ribose sugar pucker is evident in both supercoiled and nicked plasmid species. No gross conformational transitions were detected for native supercoiled DNA, and consequently, subtle rearrangements appear sufficient to absorb the supercoiling deformations.  相似文献   

2.
Li H  Bo H  Wang J  Shao H  Huang S 《Cytotechnology》2011,63(1):7-12
To establish a cost-effective purification process for the large-scale production of plasmid DNA for gene therapy and DNA vaccination, a single anion-exchange chromatography (AEC) step was employed to purify supercoiled plasmid DNA (sc pDNA) from other isoforms and Escherichia coli impurities present in a clarified lysate. Two different size and conformation plasmids were used as model targets, and showed similar elution behavior in this chromatographic operation, in which sc pDNA was effectively separated from open circle plasmid DNA (oc pDNA) in a salt gradient. The process delivered high-purity pDNA of homogeneity of 95 ± 1.1% and almost undetectable levels of endotoxins, genomic DNA, RNA and protein, at a yield of 65 ± 8%. Furthermore, the transfection efficiency (29 ± 0.4%) was significantly higher than that (20 ± 0.1%) of a pDNA control. The present study confirms the possibility of using a single AEC step to purify sc pDNA from other isoforms and host contaminants present in a clarified E. coli lysate.  相似文献   

3.
Static and dynamic light scattering measurements were made of solutions of pGem1a plasmids (3730 base pairs) in the relaxed circular (nicked) and supercoiled forms. The static structure factor and the spectrum of decay modes in the autocorrelation function were examined in order to determine the salient differences between the behaviors of nicked DNA and supercoiled DNA. The concentrations studied are within the dilute regime, which is to say that the structure and dynamics of an isolated DNA molecule were probed. Static light scattering measurements yielded estimates for the molecular weight M, second virial coefficient A2, and radius of gyration RG. For the nicked DNA, M = (2.8 ± 0.4) × 106g/mol, A2 = (0.9 ± 0.2) × 10−3 mol cm3/g2, and RG = 90 ± 3 nm were obtained. For the supercoiled DNA, M = (2.5 ± 0.4) × 106 g/mol, A2 = (1.2 ± 0.2) × 10−3 mol cm3/g2, and RG = 82 ± 2.5 nm were obtained. The static structure factors for the nicked and supercoiled DNA were found to superpose when they were scaled by the radius of gyration. The intrinsic stiffness of DNA was evident in the static light scattering data. Homodyne intensity autocorrelation functions were collected for both DNAs at several angles, or scattering vectors. At the smallest scattering vectors the probe size was comparable to the longest intramolecular distance, while at the largest scattering vectors the probe size was smaller than the persistence length of the DNA. Values of the self-diffusion coefficients D were obtained from the low-angle data. For the nicked DNA, D = (2.9 ± 0.3) × 10−8 cm2/s, and for the supercoiled DNA, D = (4.11 ± 0.21) × 10−8 cm2/s. The contribution to the correlation function from the internal dynamics of the DNA was seen to result in a strictly bimodal decay function. The rates of the faster mode Γint, reached plateau values at low angles. For the nicked DNA, Γint = 2500 ± 500 s−1, and for the supercoiled DNA, Γint = 5000 ± 500 s−1. These rates correspond to the slowest internal relaxation modes of the DNAs. The dependence of the relaxation rates on scattering vector was monitored with the aid of cumulants analysis and compared with theoretical predictions for the semiflexible ring molecule. The internal mode rates and the dependence of the cumulants moments reflected the difference between the nicked DNA and the supercoiled DNA dynamical behavior. The supercoiled DNA behavior seen here indicates that conformational dynamics might play a larger role in DNA behavior than is suggested by the notion of a branched interwound structure. © 1996 John Wiley & Sons, Inc.  相似文献   

4.
In the current study we developed a process for the capture of pDNA exploiting the ability of aqueous two-phase systems to differentiate between different forms of DNA. In these systems scpDNA exhibits a near quantitative partitioning in the salt-rich bottom phase. The successive recovery from the salt rich bottom phase is accomplished by a novel membrane step. The polish operation to meet final purity demands is again based on a system exploiting a combination of the denaturation of the nucleic acids present, specific renaturation of scpDNA, and an ATP system able to differentiate between the renatured scpDNA and the denatured contaminants such as ocpDNA and genomic host DNA. This polish step thus allows a rapid and efficient separation of scpDNA from contaminating nucleic acids which up to date otherwise only can be accomplished with much more cumbersome chromatographic methods. In a benchmark comparison, it could be shown that the newly developed process exhibits a comparable yield to an industrial standard process while at the same time showing superior performance in terms of purity and process time. Additionally it could be shown that the developed polish procedure can be applied as a standalone module to support already existing processes.  相似文献   

5.
The extracellular nucleases from Alteromonas espejiana BAL 31 can catalyze the endonucleolytic and/or exonucleolytic hydrolysis of duplex DNA in response to a variety of alterations, either covalent or noncovalent, in DNA structure. The nuclease can exist as at least two kinetically and molecularly distinct protein species. The two species that have been studied, called the 'fast' (F) and 'slow' (S) nucleases, both readily convert negatively supercoiled DNAs to linear duplex molecules and accomplish this conversion through the formation of a circular duplex intermediate containing usually a single interruption in one strand. It is further shown that most of these intermediates contain gaps arising from the removal in a processive manner of one or more nucleotide residues after the introduction of the initial strand break (nick). Considering only the intermediates with gaps, the average number of missing residues is 6.3 +/- 0.5 and 2.8 +/- 0.3, respectively, for DNA acted upon by the F and S enzymes independently of the extent of conversion of supercoiled DNA. The nicks and gaps are bounded by 3'-hydroxyl and 5'-phosphoryl termini. When singly nicked circular DNA is used as the substrate, conversion to the linear duplex form occurs predominantly through a gapped circular intermediate with the same average numbers, within experimental error, of missing nucleotides for the respective nuclease species as found when supercoiled DNA is the substrate. The conversion to linear duplex DNA is much slower when nicked circular DNA is the substrate compared to that found when supercoiled DNA is the starting material.  相似文献   

6.
A method for quantifying the proportion of supercoiled circular (SC) forms in DNA solutions is described. The method (SCFluo) takes advantage of the reversible denaturation property of SC forms and the high specificity of the PicoGreen fluorochrome for double-stranded (ds)DNA. Fluorescence values of forms capable of reversible denaturation after a 5 min heating, 2 min cooling step are normalised to fluorescence values of total dsDNA present in the preparation. For samples with a SC content >20–30%, good regression fits were obtained when values derived from densitometric scanning of an agarose gel and those derived from the SCFluo method were compared. The method represents an attractive alternative to currently established methods because it is simple, rapid and quantitative. During large-scale processing and long-term storage, enzymatic, chemical and shear degradation may substantially decrease the SC content of plasmid DNA preparations. Regulations for pharmaceutical grade products for use in gene therapy and DNA vaccination may require >90% of the plasmid to be in the SC form. In the present study the SC content of 6.9, 13 and 20 kb plasmid preparations that had been subjected to chemical and shear degradation was successfully quantified using the new method.  相似文献   

7.
8.
Peptide nucleic acid (PNA) is a DNA analog with broad biotechnical applications, and possibly also treatment applications. Its suggested uses include that of a specific anchor sequence for biologically active peptides to plasmids in a sequence-specific manner. Such complexes, referred to as Bioplex, have already been used to enhance non-viral gene transfer in vitro. To investigate how hybridization of PNAs to supercoiled plasmids would be affected by the binding of multiple PNA-peptides to the same strand of DNA, we have developed a method of quantifying the specific binding of PNA using a PNA labeled with a derivative of the fluorophore thiazole orange (TO). Cooperative effects were found at a distance of up to three bases. With a peptide present at the end of one of the PNAs, steric hindrance occurred, reducing the increase in binding rate when the distance between the two sites was less than two bases. In addition, we found increased binding kinetics when two PNAs binding to overlapping sites on opposite DNA strands were used, without the use of chemically modified bases in the PNAs.  相似文献   

9.
The supercoiled circular (SC) topology form of plasmid DNA has been regarded to be advantageous over open circular or linearized analogue in transfection and expression efficiency, and therefore are largely demanded in the biopharmaceutical manufacturing. However, production of high-purity SC plasmid DNA would result in high manufacturing cost. The effect of SC proportion in plasmid DNA on the quality of packaged lentiviral vectors has never been reported. In this study, we established an efficient system for production of high-titer lentiviral vectors using suspension HEK293SF cells in serum-free media, and the lentiviral titer was not associated with the proportion of SC plasmid DNA. Plasmids DNA with different proportion of SC, open-circular, and linearized forms were prepared using the thermal denaturation method, and were transfected to adherent HEK293T or suspension HEK293SF cells for packaging of lentiviral vectors. The titer of lentiviral vectors from HEK293T cells, but not from HEK293SF cells, was significantly impaired when the proportion of SC plasmid DNA decreased from 60–80% to 30–40%. Further decrease of SC plasmid proportion to 3% led to a dramatic reduction of lentiviral titer no matter the packaging cell line was. However, lentiviral vectors from HEK293SF cells still showed a high titer even when the proportion of SC plasmid DNA was 3%. This study demonstrated that extremely high proportion of SC plasmid DNA was not required for packaging of high-titer lentiviral vector in HEK293SF cells, at least under our manufacturing process.  相似文献   

10.
Single and multiple loops were seen when the plasmid pRW751 was allowed to react with anti-Z-DNA or with a Z-specific cross-linking agent. Loop formation was dependent upon negative supercoiling and the presence of Z-specific antibody or cross-linking agent. Restriction enzyme mapping located 18 sites at the bottoms of loops, in addition to the two (dG-dC)n inserts of pRW751. No more than 5 loops were seen in any of the measured molecules; thus, not all potential Z-sites assume the Z conformation at any particular time. Stretches of alternating purine-pyrimidine sequences occur at all 20 sites. Almost all of the Z sites could be mapped to regions located at the beginnings or ends of reading frames or at various regulatory sites. Our findings support the concept that supercoiling brings distant sequences to within 5A of one another, allowing joint participation in regulatory processes controlled by DNA-binding proteins.  相似文献   

11.
We have examined the duplex DNA unwinding (helicase) properties of the Escherichia coli helicase II protein (uvrD gene product) over a wide range of protein concentrations and solution conditions using a variety of duplex DNA substrates including fully duplex blunt ended and nicked circular molecules. We find that helicase II protein is able to initiate on and completely unwind fully duplex DNA molecules without the requirement for a covalently attached 3' single-stranded DNA tail. This DNA unwinding activity is dependent upon Mg2+ and ATP and requires that the amount of protein be in excess of that needed to saturate the resulting single-stranded DNA. Unwinding experiments on fully duplex blunt ended DNA with lengths of 341, 849, 1625, and 2671 base pairs indicate that unwinding occurs at the same high ratios of helicase II protein/nucleotide, independent of DNA length (50% unwinding requires approximately 0.6 helicase II monomers/nucleotide in 2.5 mM MgCl2, 10% glycerol, pH 7.5, 37 degrees C). Helicase II protein is also able to unwind completely a nicked circular DNA molecule containing 2671 base pairs. At lower but still high molar ratios of helicase II protein to DNA, duplex DNA molecules containing a single-stranded (ss) region attached to a 3' end of the duplex are preferentially unwound in agreement with the results obtained by S. W. Matson [1986) J. Biol. Chem. 261, 10169-10175). This preferential unwinding of duplex DNA with an attached 3' ssDNA most likely reflects the availability of a high affinity site (ssDNA) with the proper orientation for initiation; however, this may not reflect the type of DNA molecule upon which helicase II protein initiates DNA unwinding in vivo. The effects of changes in NaCl, NaCH3COO, and MgCl2 concentration on the ability of helicase II protein to unwind fully duplex DNA and duplex DNA with a 3' ssDNA tail have also been examined. Although the unwinding of fully duplex and nicked circular DNA molecules reported here occurs at higher helicase II protein to DNA ratios than have been previously used in most studies of this protein in vitro, this activity is likely to be relevant to the function of this protein in vivo since very high levels of helicase II protein accumulate in E. coli during the SOS response to DNA damage (approximately 2-5 x 10(4) copies/cell).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The interaction with closed circular supercoiled and linear DNA of bisphenanthridinium compounds substituted through both the meta and para positions of the 6-phenyl group, along with appropriate monomer intercalators as controls, has been investigated by viscometric titration. When CPK models for the phenanthridinium rings of the three bis-compounds are oriented in a parallel manner as a model for intercalation, their ring plane to ring plane distances are approximately 7 to 8 A (SR 2430), 11 A (SR 2193), and 15 A (SR 2166). In SR 2430 the two phenanthridines are linked through the para positions of the 6-phenyl group; this chain allows intercalation of the two rings at adjacent binding sites in DNA, but is not long enough to accommodate an excluded site. The viscometric titrations with both superhelical and linear DNA clearly indicate that SR 2430 gives results close to those of the monomer control compounds while SR 2193 and SR 2166 have approximately twice the unwinding angle and DNA length increase on binding to DNA as the monomer compounds. These phenanthridinium compounds, therefore, are capable of bisintercalation only if their linking groups are of sufficient length to allow an excluded binding site between base pairs. This conclusion is supported by DNA thermal denaturation experiments in the presence of these compounds.  相似文献   

13.
Recombinant plasmids pK1A108, pK3A108, pK4A108 and pK5/6T217 containing 80 +/- 1 base pair inserts with different curvature-inducing sequences were studied using the DNA structure probe osmium tetroxide in the presence of pyridine (Os, py). The insertion sequences of the plasmids pK1A108, pK3A108, and pK4A108 are strongly related while the degree of curvature increases from pK1A108 (no curvature) less than pK3A108 less than pK4A108 less than pK5/6T217. The Os, py probe reacts selectively with single-stranded and distorted double-stranded regions in the DNA double helix. Nuclease S1 was used to recognize and cleave regions made permanently single-stranded due to osmium recognize and cleave regions made permanently single-stranded due to osmium modification. In linearized plasmids treatment with Os, py produced no S1-detectable site-specific modification. This result is in agreement with models suggested for DNA curvature; in general, continuous base pairing and base stacking is considered through different sequence blocks as well as through structural junctions. Os, py-probing of the plasmids in the supercoiled state also resulted in no S1-detectable site-specific modification within the inserts of pK1A108, pK3A108, and pK4A108 plasmids (while the regions containing inverted repeat nucleotide sequences in these plasmids were site-specifically modified). In contrast, supercoiled pK5/6T217 DNA was site-specifically modified within the curvature-inducing insert sequence. The nucleotide sequence of the insert of this plasmid strongly differs from the insertion sequences of the other three plasmids; it is extremely AT-rich and contains regularly arranged dAGAGA and dATATA sequences. The structural distortion observed in supercoiled pK5/6T217 is most probably due to the presence of these sequences in a particular arrangement in the insertion sequence.  相似文献   

14.
The aim of the study was to characterize DNA lesions caused by microprojectile bombardment and by the postbombardment presence of tungsten particles in transformed cells. For the sake of simplicity, plasmid DNA was used as a target for bombardment with naked tungsten particles. Unexpectedly extensive DNA degradation was observed under standard bombardment conditions. However, no further DNA fragmentation occurred under postbombardment conditions, simulated by incubation of plasmid DNA with a suspension of tungsten particles. Instead, relaxation and linearization of supercoiled circular plasmids (pAHC25 and others) took place. It is concluded that the observed linearization (a single site double–strand break in DNA circle) results from the ability of tungsten to catalyse the hydrolysis of phosphodiester bonds in torsionally strained sites of native DNA selectively.  相似文献   

15.
16.
The plasmid pUC18 DNA isolated from Escherichia coli HB101 were analyzed by two-dimensional agarose gel electrophoresis and hybridization. The results show that the DNA sample can be separated into six groups of different structural components. The plectonemically and solenoidally supercoiled pUC18 DNA coexist in it. These two different conformations of supercoiled DNA are interchangeable with the circumstances (ionic strength and type, etc.). The amount of solenoidally supercoiled pUC18 DNA in the samples can be changed by treatment of DNA topoisome rases. Under an electron microscope, the solenoidal supercoiling DNA has a round shape with an average diameter of 45 nm. The facts suggest that solenoidaUy supercoiled DNA be a structural entity independent of histones. The polymorphism of DNA structure may be important to packing of DNA in vivo.  相似文献   

17.
We report for the first time the use of liquid-liquid counter-current chromatography (CCC) for the preparative scale fractionation of plasmid DNA. Almost complete fractionation of supercoiled and open circular plasmid DNA (6.9 kb) could be achieved using a phase system comprising 12.5% (w/w) PEG 600 and 18% (w/w) K2HPO4. Experiments were carried out on a Brunel J-type CCC machine (100 ml PTFE coil) at a mobile phase flow rate of 0.5 ml min– 1 and a rotational speed of 600 rpm. Compared to conventional HPLC techniques the capacity of CCC is not limited by the surface area of resin available for adsorption. Symbols: C b, Concentration of plasmid in lower phase (g ml–1); C t, Concentration of plasmid in upper phase (g ml–1); CV, Total volume of mobile phase present in the coil and connecting leads (ml); K, Equilibrium solute partition coefficient (K=C t/C b); OC, Open circular plasmid; SC, Supercoiled plasmid; S f, Percentage stationary phase retention (S f=V s/V c); t s, Time for phase separation (s); V b, Volume of bottom phase (ml); V c, Coil volume (ml); V m, Volume of mobile phase present in coil at equilibrium (ml); V r, Volume ratio of two phases (V r=V t/V b); V s, Volume stationary phase present in coil at equilibrium (ml); V t, Volume of top phase (ml); V tot, Total volume of phase system (ml).  相似文献   

18.
Properties of the viral R plasmid Rphi6P are described. As a temperate bacteriophage, it plaques on the facultative phototroph Rhodopseudomonas sphaeroides. Under aerobic conditions the phage had a latent period of 180 min, a burst time of 200 min, and a burst size of 15 to 20 particles per infective center. The encapsidated viral genome occurred as a supercoiled, circular DNA duplex with a mean contour length of 16.5 +/- 10 micron. Percent guanine plus cytosine, as calculated from thermal denaturation profiles, was 63.5. Mitomycin C-induced loss of the prophage suggested an extrachromosomal location in the host cell. Use of this curing agent enabled the isolation of a plasmid-free strain of R. sphaeroides. Biophysical analysis of the plasmid-free strain lysogenized with Rphi6P confirmed that the prophage occurred as a plasmid in the host cell.  相似文献   

19.
Ozone-reactive sites on the nucleobase moieties in supercoiled pBR322 DNA were investigated by using sequencing procedures. Ozonolysis in the absence of salt resulted in degradation of thymine residues in the A + T rich region located at 3100-3400bp. In the presence of salt, such as NaCl or MgCl2, a conformational change of plasmid DNA was induced. Subsequently the thymine and guanine residues in the loop of the cruciform located at 3120bp and 3220bp were degraded. In addition, central thymine residues present in sequences GTA, GTT and ATA were also degraded.  相似文献   

20.
The formation of melted regions from A + T-rich sequences and left-handed Z-DNA by alternating purine-pyrimidine sequences will both be facilitated by negative supercoiling, and thus if the sequences are present within the same plasmid molecule they will compete for the free energy of supercoiling. We have studied a series of plasmids that contain either (CG)8 or (TG)12 sequences in either G + C or A + T-rich contexts, by means of two-dimensional gel electrophoresis and chemical modification. We observe both B-Z and helix-coil transitions in all plasmids at elevated temperatures and low ionic strength. The plasmids fall into a number of different classes, in terms of the conformational behavior. As the superhelix density is increased, pCG8/vec ((CG)8 in G + C-rich context) undergoes an initial B-Z transition, followed by melting transitions in sequences remote from the (CG)8 sequence. The two transitions are coupled through the topology of the molecule but are otherwise independent. When the (CG)8 sequence was placed in an A + T-rich context (pCG8/col), the helix-coil transition was perturbed by the presence of the Z-DNA segment. Replacement of the (CG)8 tracts by (TG)12 sequences resulted in a further level of interaction between the transitions. Statistical mechanical modeling of the transitions suggested that at intermediate levels of negative supercoiling the Z-DNA formed by the (TG)12 sequence has a lowered probability due to the helix-coil transition in the A + T-rich sequences. These studies illustrate the complexities of competing conformational equilibria in supercoiled DNA molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号