首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The induction of thiols including glutathione and phytochelatins as well as the activities of antioxidant enzymes namely superoxide dismutase isoenzymes and those enzymes involved in the ascorbate-glutathione cycle in watercress plants under arsenic stress were investigated. Arsenic concentrations and tissue type-dependent response to arsenic were assessed. Plant was capable of accumulating large amounts of arsenic in the shoots. Superoxide dismutase isoenzymes activity and phytochelatin level was higher in shoots than in roots. In roots, ascorbate levels increased significantly, while no relationship was found between ascorbate contents and arsenic tolerance in shoots. Treatment with arsenic resulted in a remarkable increase in glutathione content of roots at all of the arsenic concentrations, while in shoots, glutathione content increased by lower levels of arsenic. Differences were noted in both roots and shoots for enzymes involved in the ascorbate-glutathione cycle. These results suggest that, the strategy of tolerance to arsenic toxicity in roots of watercress plants is different from that of shoots.  相似文献   

2.
The activities of the ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) and SOD were studied in cell organelles of the cultivated tomato Lycopersicon esculentum (M82) and its wild salt-tolerant related species Lycopersicon pennellii (Lpa). All four enzymes of the ascorbate-glutathione cycle were present in chloroplasts/plastids, mitochondria and peroxisomes of leaf and root cells of both tomato species. In all leaf and root organelles of both species, the activity of MDHAR was similar to, or higher than, that of APX, while the activity of DHAR was one order of magnitude lower than that of MDHAR. Based on these results, it is suggested that in the organelles of both tomato species, ascorbate is regenerated mainly by MDHAR. In both tomato species, GR activity, and to a lesser extent DHAR activity, was found to reside in the soluble fraction of all leaf and root cell organelles, while APX and MDHAR activities were distributed between the membrane and soluble fractions. A higher SOD to APX activity ratio in all Lpa organelles was the major difference between the two tomato species. It is possible that this higher ratio contributes to the inherently better protection of Lpa from salt stress, as was previously reported.  相似文献   

3.
The presence of the enzymes of the ascorbate-glutathione cycle was investigated in mitochondria and peroxisomes purified from pea (Pisum sativum L.) leaves. All four enzymes, ascorbate peroxidase (APX; EC 1.11.1.11), monodehydroascorbate reductase (EC 1.6.5.4), dehydroascorbate reductase (EC 1.8.5.1), and glutathione reductase (EC 1.6.4.2), were present in mitochondria and peroxisomes, as well as in the antioxidants ascorbate and glutathione. The activity of the ascorbate-glutathione cycle enzymes was higher in mitochondria than in peroxisomes, except for APX, which was more active in peroxisomes than in mitochondria. Intact mitochondria and peroxisomes had no latent APX activity, and this remained in the membrane fraction after solubilization assays with 0.2 M KCl. Monodehydroascorbate reductase was highly latent in intact mitochondria and peroxisomes and was membrane-bound, suggesting that the electron acceptor and donor sites of this redox protein are not on the external side of the mitochondrial and peroxisomal membranes. Dehydroascorbate reductase was found mainly in the soluble peroxisomal and mitochondrial fractions. Glutathione reductase had a high latency in mitochondria and peroxisomes and was present in the soluble fractions of both organelles. In intact peroxisomes and mitochondria, the presence of reduced ascorbate and glutathione and the oxidized forms of ascorbate and glutathione were demonstrated by high-performance liquid chromatography analysis. The ascorbate-glutathione cycle of mitochondria and peroxisomes could represent an important antioxidant protection system against H2O2 generated in both plant organelles.  相似文献   

4.
The Arabidopsis thaliana ascorbate-deficient vtc-1 mutant has only 30% ascorbate contents of the wild type (WT). This ascorbate-deficient mutant was used here to study the physiological roles of ascorbate under salt stress in vivo. Salt stress resulted in a more significant decrease in CO2 assimilatory capacity in the vtc-1 mutant than in the WT. Photosystem II function in the Arabidopsis vtc-1 mutant also showed an increased sensitivity to salt stress. Oxidative stress, indicated by the hydrogen peroxide content, increased more dramatically in the vtc-1 mutant than in the WT under salt stress. To clarify the reason for the increased oxidative stress in the vtc-1 mutant, the contents of small antioxidant compounds and the activities of several antioxidant enzymes in the ascorbate-glutathione cycle were measured. Despite an elevated glutathione pool in the vtc-1 mutant, the ascorbate contents and the reduced form of ascorbate decreased very rapidly under salt stress. These results showed that the activities of MDAR and DHAR were lower in the vtc-1 mutant than in the WT under salt stress. Thus, low intrinsic ascorbate and an impaired ascorbate-glutathione cycle in the vtc-1 mutant under salt stress probably induced a dramatic decrease in the reduced form of ascorbate, which resulted in both enhanced ROS contents and decreased NPQ in the vtc-1 mutant.  相似文献   

5.
6.
环境胁迫和抗坏血酸的氧化还原状态   总被引:21,自引:0,他引:21  
为了解环境胁迫对植物体中抗坏血酸含量及氧化还原状态的影响,以不同强度的冰冻和干旱两种胁迫为例,研究了它们对沈阳几种针叶树离体叶抗坏血酸、脱氢抗坏血酸含量以及抗坏血酸-谷胱甘肽循环中4种酶活性的影响。结果表明,两种胁迫达到一定强度后,都能使还原态抗坏血酸含量下降而使脱氢抗坏血酸含量上升。冰冻使抗坏血酸过氧化酶和单脱氢抗坏血酸还原酶活性下降。轻度失水使这两种酶活性上升,失水加重后转而趋于下降。脱氢抗坏血酸还原酶和谷胱甘肽还原酶活性对两种胁迫反应均不如前两种酶敏感。结合以前的研究结果,认为这一H2O2清除系统在导致驯化(acclimation)的轻度胁迫作用下可以得到加强,而当胁迫强度过大时则其清除能力下降并使组织受到伤害。文中还报告了沈阳几种针叶树抗寒性和针叶中抗坏血酸含量及上述4种酶活性之间的相关关系。  相似文献   

7.
为了解环境胁迫对植物体中抗坏血酸含量及氧化还原状态的影响,以不同强度的冰冻和干旱两种胁迫为例,研究了它们对沈阳几种针叶树离体叶抗坏血酸、脱氢抗坏血酸含量以及抗坏血酸-谷胱甘肽循环中4种酶活性的影响.结果表明,两种胁迫达到一定强度后,都能使还原态抗坏血酸含量下降而使脱氢抗坏血酸含量上升.冰冻使抗坏血酸过氧化酶和单脱氢抗坏血酸还原酶活性下降.轻度失水使这两种酶活性上升,失水加重后转而趋于下降.脱氢抗坏血酸还原酶和谷胱甘肽还原酶活性对两种胁迫反应均不如前两种酶敏感.结合以前的研究结果,认为这一H2O2清除系统在导致驯化(acclimation)的轻度胁迫作用下可以得到加强,而当胁迫强度过大时则其清除能力下降并使组织受到伤害.文中还报告了沈阳几种针叶树抗寒性和针叶中抗坏血酸含量及上述4种酶活性之间的相关关系.  相似文献   

8.
Zaharieva TB  Abadía J 《Protoplasma》2003,221(3-4):269-275
Summary.  The effects of Fe deficiency stress on the levels of ascorbate and glutathione, and on the activities of the enzymes ferric chelate reductase, glutathione reductase (EC 1.6.4.2), ascorbate free-radical reductase (EC 1.6.5.4) and ascorbate peroxidase (EC 1.11.1.11), have been investigated in sugar beet (Beta vulgaris L.) roots. Plasma membrane vesicles and cytosolic fractions were isolated from the roots of the plants grown in nutrient solutions in the absence or presence of Fe for two weeks. Plants responded to Fe deficiency not only with a 20-fold increase in root ferric chelate reductase activity, but also with moderately increased levels of the general reductants ascorbate (2-fold) and glutathione (1.6-fold). The enzymes of the ascorbate-glutathione cycle in roots were also affected by Fe deficiency. Glutathione reductase activity was enhanced 1.4-fold with Fe deficiency, associated to an increased ratio of reduced to oxidized glutathione, from 3.1 to 5.2. The plasma membrane fraction from iron-deficient roots showed 1.7-fold higher ascorbate free-radical reductase activity, whereas in the cytosolic fraction the enzyme activity was not affected by Fe deficiency. The activity of the cytosolic hemoprotein ascorbate peroxidase decreased approximately by 50% with Fe deprivation. These results show that sugar beet responds to Fe deficiency with metabolic changes affecting components of the ascorbate-glutathione cycle in root cells. This suggests that the ascorbate-glutathione cycle would play certain roles in the general Fe deficiency stress responses in strategy I plants. Received November 19, 2001; accepted September 30, 2002; published online April 2, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, CSIC, Apartado 202, 50080 Zaragoza, Spain.  相似文献   

9.
Soybean (Glycine max [L.] Merr.) root nodules contain the enzymes of the ascorbate-glutathione cycle for defense against activated forms of oxygen. Nodulated roots of hydroponically grown soybean plants were exposed to atmospheres containing 2, 21, 50, or alternating 21 and 50 kilopascals of O2. The activities of ascorbate (ASC) peroxidase, monodehydroascorbate (MDHA) reductase, dehydroascorbate (DHA) reductase, and glutathione (GSSG) reductase were higher in nodules exposed to high pO2. Nodule contents of ascorbate and reduced glutathione were also greater in the high pO2 treatments. Treatment of nodulated plants with fixed nitrogen (urea) led to concomitant decreases in acetylene reduction activity, in leghemoglobin content, and in activities of ASC peroxidase, DHA reductase, and GSSG reductase. Activity of MDHA reductase and glutathione concentrations in nodules were not affected by treatment with urea. The enzymes of the ascorbate-glutathione cycle were also detected in uninfected soybean roots, although at levels substantially below those in nodules. These observations indicate that the ascorbate-glutathione cycle can adjust to varying physiological conditions in nodules and that there is a key link between N2 fixation and defenses against activated forms of oxygen.  相似文献   

10.
Nicotiana tabacum L. plantlets were cultured in vitro photoautotrophically (0% sucrose) and photomixotrophically (3% or 5% sucrose) at two irradiances (80 or 380 mumol m-2 s-1) with the aim of investigating the effect of these culture conditions on photosynthetic parameters and on protective systems against excess excitation energy. In plantlets grown photoautotrophically under higher irradiance photoinhibition was demonstrated. These plantlets had a decreased chlorophyll (Chl) a + b content and Chl a/b ratio, an increased content of xanthrophyll cycle pigments and a higher deepoxidation state, a decreased maximum photochemical efficiency of photosystem II (PS II) and actual photochemical efficiency of PS II, and an increased non-photochemical quenching. In the photoautotrophically grown plantlets and those photomixotrophically grown with 3% sucrose, the increase of growth irradiance from 80 to 380 mumol m-2 s-1 stimulated the activities of ascorbate-glutathione cycle enzymes with the exception of ascorbate peroxidase. Ascorbate peroxidase activity was not affected by the increase in growth irradiance but a significant decrease with increasing sucrose concentration was evident. The higher concentration of sucrose in the medium (5%) in combination with the higher irradiance inhibited photosynthesis (decrease in Chl a + b content and net photosynthetic rate) but no significant changes in activities of ascorbate-glutathione cycle enzymes were found. These results suggest that exogenous sucrose added to the medium improved high irradiance and oxidative stress resistance of the plantlets but the effect of sucrose is concentration dependent.  相似文献   

11.
Bai X  Yang L  Tian M  Chen J  Shi J  Yang Y  Hu X 《PloS one》2011,6(6):e20714
The viability of recalcitrant seeds is lost following stress from either drying or freezing. Reactive oxygen species (ROS) resulting from uncontrolled metabolic activity are likely responsible for seed sensitivity to drying. Nitric oxide (NO) and the ascorbate-glutathione cycle can be used for the detoxification of ROS, but their roles in the seed response to desiccation remain poorly understood. Here, we report that desiccation induces rapid accumulation of H(2)O(2), which blocks recalcitrant Antiaris toxicaria seed germination; however, pretreatment with NO increases the activity of antioxidant ascorbate-glutathione pathway enzymes and metabolites, diminishes H(2)O(2) production and assuages the inhibitory effects of desiccation on seed germination. Desiccation increases the protein carbonylation levels and reduces protein S-nitrosylation of these antioxidant enzymes; these effects can be reversed with NO treatment. Antioxidant protein S-nitrosylation levels can be further increased by the application of S-nitrosoglutathione reductase inhibitors, which further enhances NO-induced seed germination rates after desiccation and reduces desiccation-induced H(2)O(2) accumulation. These findings suggest that NO reinforces recalcitrant seed desiccation tolerance by regulating antioxidant enzyme activities to stabilize H(2)O(2) accumulation at an appropriate concentration. During this process, protein carbonylation and S-nitrosylation patterns are used as a specific molecular switch to control antioxidant enzyme activities.  相似文献   

12.
A comparative study of just cadmium (Cd) or heat and their combination treatments on some physiological parameters and the antioxidant systems in transgenic rice ( Oryza sativa L. cv. Zhonghua No.11) carrying glutathione-S-transferase (GST, EC. 2.5.1.18) and catalase1 (CAT1, EC. 1.11.1.6) and non-transgenics was conducted. The results revealed improved resistance in the transgenics to Cd and the combined Cd and heat stress than non-transgenics. Data showed that the activities of CAT, GST, superoxide dismutase (EC.1.15.1.1) and all components of the ascorbate-glutathione cycle measured in the stressed transgenics shoots are significantly different from those of non-transgenics. Results indicated that co-expression of GST and CAT1 had an important effect on the antioxidant system, in particular, the whole ascorbate-glutathione cycle. The less oxidative damage induced by Cd and the stress combination in the transgenics resulted not only from the GST and CAT1 transgene but also from the coordination of the whole ascorbate-glutathione cycle.  相似文献   

13.
14.
 以日本引进的设施专用耐盐茄(Solanum melongena)品种‘Torvum Vigor’为砧木, 栽培茄(S. torvum)品种‘苏崎茄’为接穗, 用营养液栽培, 对80 mmol&;#8226;L–1 Ca(NO3)2胁迫下茄子嫁接苗和自根苗叶片抗坏血酸-谷胱甘肽循环系统中抗氧化酶活性和抗氧化物及H2O2含量进行比较。结果表明, Ca(NO3)2胁迫下茄子幼苗叶片H2O2含量有所增加, 但嫁接苗叶片H2O2含量显著低于自根苗。Ca(NO3)2胁迫下嫁接苗叶片抗氧化酶(APX、DHAR和GR)活性、AsA和GSH再生率、氧化还原力(AsA/DHA值和GSH/GSSG值)均显著高于自根苗。综上所述, Ca(NO3)2胁迫下嫁接苗保持良好的AsA-GSH循环效率, 清除H2O2效率较高, 细胞受氧化损伤程度较轻, 表现出较强的耐盐性。  相似文献   

15.
The ascorbate-glutathione system was studied during development and maturation of beech (Fagus sylvatica L.) seeds, the classification of which in the orthodox category is controversial. This study revealed an increase in glutathione content after acquisition of desiccation tolerance, which was more intensive in embryonic axes than in cotyledons. During seed maturation, the redox status of glutathione markedly changed toward the more reducing state, especially in cotyledons. Ascorbic acid content decreased during maturation, mostly in cotyledons. Activities of the enzymes of the ascorbate-glutathione cycle—ascorbate peroxidase (APX, EC 1.11.1.11), monodehydroascorbate reductase (MR, EC 1.6.5.4), dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2)—were markedly higher in embryonic axes than in cotyledons throughout the study period. In the course of seed maturation, the activities of these enzymes decreased. Importance of the ascorbate-glutathione cycle in desiccation tolerance of beech seeds was discussed in relation to results for typical orthodox and recalcitrant seeds of other broadleaved species.  相似文献   

16.
Up-regulation of the antioxidant system provides protection against NaCl-induced oxidative damage in plants. Antioxidants and activity of enzymes involved in the ascorbate-glutathione (ASC-GSH) cycle in tobacco Bright Yellow-2 (BY-2) were investigated to assess the antioxidant protection offered by exogenous proline and glycinebetaine (betaine from now on) against salt stress using cells grown in suspension culture. Reduced ascorbate (ASC) was detected in BY-2 cells but dehydroascorbate (DHA) was not. Large quantities of a reduced form of glutathione (GSH) and smaller quantities of an oxidized form of glutathione (GSSG) were detected in BY-2 cells. Salt stress significantly reduced the contents of ASC and GSH as well as activities of ASC-GSH cycle enzymes such as ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), and glutathione reductase (GR). Exogenous proline or betaine increased the activities of all enzymes except MDHAR involved in NaCl-induced ASC-GSH cycle. Levels of ASC and GSH in BY-2 cells under salt stress were lower in the presence of proline or betaine than in the absence of proline or betaine whereas there was no difference in redox status. Proline proved more effective than betaine in maintaining the activity of enzymes involved in NaCl-induced ASC-GSH cycle. Neither proline nor betaine had any direct protective effect on NaCl-induced enzyme activity involved in the antioxidant system; however, both improved salt tolerance by increasing enzyme activity. The present study, together with our earlier findings [Hoque MA, Okuma E, Banu MNA, Nakamura Y, Shimoishi Y, Murata Y. Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. J Plant Physiol 2006;164:553-61.], suggests that proline offered greater protection against salt stress than betaine did because proline was more effective in increasing the activity of enzymes involved in the antioxidant system.  相似文献   

17.
18.
A comparative study of just cadmium (Cd) or heat and their combination treatments on some physiological parameters and the antioxidant systems in transgenic rice (Oryza sativa L. cv. Zhonghua No.11) carrying glutathione-S-transferase (GST, EC. 2.5.1.18) and catalase1(CAT1, EC. 1.11.1.6) and non-transgenics was conducted. The results revealed improved resistance in the transgenics to Cd and the combined Cd and heat stress than non-transgenics. Data showed that the activities of CAT, GST, superoxide dismutase (EC.1.15.1.1) and all components of the ascorbate-glutathione cycle measured in the stressed transgenics shoots are significantly different from those of non-transgenics. Results indicated that co-expression of GST and CAT1 had an important effect on the antioxidant system, in particular, the whole ascorbate-glutathione cycle. The less oxidative damage induced by Cd and the stress combination in the transgenics resulted not only from the GST and CAT1 transgene but also from the coordination of the whole ascorbate-glutathione cycle.  相似文献   

19.
壳聚糖对镉胁迫下玉米幼苗叶片AsA-GSH循环的调控效应   总被引:2,自引:0,他引:2  
以玉米(Zea mays L.)品种‘郑单958’为实验材料,分析外施壳聚糖对镉胁迫下玉米幼苗生物量、叶片镉含量、叶片超氧阴离子(O2·-)产生速率和过氧化氢(H2O2)的含量,以及抗坏血酸-谷胱甘肽(AsA-GSH)循环中抗氧化酶的活性及抗氧化物含量的影响。结果显示,随着镉胁迫时间的延长,玉米幼苗发生氧化胁迫,叶片抗氧化酶(APX、GR、DHAR、MDHAR)活性和抗氧化物(AsA、GSH)的含量降低,镉积累过量会抑制玉米幼苗的生长。施加壳聚糖可以降低镉胁迫下玉米幼苗叶片O2·-的产生速率和H2O2含量,提高上述抗氧化酶活性和抗氧化物的含量,促进AsA和GSH的再生,维持细胞的氧化还原状态,促进玉米幼苗的生长。研究结果表明壳聚糖处理后玉米幼苗保持了较高的AsA-GSH循环运作效率,提高了抗氧化能力,可有效缓解镉胁迫对玉米幼苗生长的抑制。  相似文献   

20.
In mitochondria isolated from growing (70–85 days) and dormant (stored for 8–12 weeks) sugar beet (Beta vulgaris L.) roots, activities of superoxide dismutase (SOD) and enzymes of the ascorbate-glutathione cycle were determined. The activity of SOD, the enzyme involved in superoxide detoxification, was much higher in mitochondria of the growing root, whereas activities of ascorbate peroxidase (APO) and glutathione reductase (GR), key enzymes of the ascorbate-glutathione cycle involved in the hydrogen peroxide degradation, increased substantially in mitochondria of dormant storage roots. Catalase (CAT) activity was detected in the fraction of root mitochondria purified in the sucrose density gradient, which activity was inhibited by cyanide by 85–90% and much weaker, by aminotriazol (by 30–35%). Submitochondrial localization of APO and CAT was analyzed using proteinase K. It was established that a substrate-binding APO center is localized on the external side of the inner membrane, whereas CAT is localized in the mitochondrial matrix. A possible role of mitochondria as ROS (hydrogen peroxide) acceptors in the cells of storage parenchyma of the stored root is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号