首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loss of cartilaginous phenotype during in vitro expansion culture of chondrocytes is a major barrier to the application of chondrocytes for tissue engineering. In previous study, we showed that dedifferentiation of chondrocytes during the passage culture was delayed by matrices formed by primary chondrocytes (P0‐ECM). In this study, we investigated bovine chondrocyte functions when being cultured on isolated extracellular matrix (ECM) protein‐coated substrata and P0‐ECM. Low chondrocyte attachment was observed on aggrecan‐coated substratum and P0‐ECM. Cell proliferation on aggrecan‐ and type II collagen/aggrecan‐coated substrata and P0‐ECM was lower than that on the other ECM protein (type I collagen and type II collagen)‐coated substrata. When chondrocytes were subcultured on aggrecan‐coated substratum, decline of cartilaginous gene expression was delayed, which was similar to the cells subcultured on P0‐ECM. These results indicate that aggrecan plays an important role in the regulation of chondrocyte functions and P0‐ECM may be a good experimental control for investigating the role of each ECM protein in cartilage ECM. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1331–1336, 2013  相似文献   

2.
3.
Implantation of tissue-engineered heterotopic cartilage into joint cartilage defects might be an alternative approach to improve articular cartilage repair. Hence, the aim of this study was to characterize and compare the quality of tissue-engineered cartilage produced with heterotopic (auricular, nasoseptal and articular) chondrocytes seeded on polyglycolic acid (PGA) scaffolds in vitro and in vivo using the nude mice xenograft model. PGA scaffolds were seeded with porcine articular, auricular and nasoseptal chondrocytes using a dynamic culturing procedure. Constructs were pre-cultured 3 weeks in vitro before being implanted subcutaneously in nude mice for 1, 6 or 12 weeks, non-seeded scaffolds were implanted as controls. Heterotopic neo-cartilage quality was assessed using vitality assays, macroscopical and histological scoring systems. Neo-cartilage formation could be observed in vitro in all PGA associated heterotopic chondrocytes cultures and extracellular cartilage matrix (ECM) deposition increased in vivo. The 6 weeks in vivo incubation time point leads to more consistent results for all cartilage species, since at 12 weeks in vivo construct size reductions were higher compared with 6 weeks except for auricular chondrocytes PGA cultures. Some regressive histological changes could be observed in all constructs seeded with all chondrocytes subspecies such as cell-free ECM areas. Particularly, but not exclusively in nasoseptal chondrocytes PGA cultures, ossificated ECM areas appeared. Elastic fibers could not be detected within any neo-cartilage. The neo-cartilage quality did not significantly differ between articular and non-articular chondrocytes constructs. Whether tissue-engineered heterotopic neo-cartilage undergoes sufficient transformation, when implanted into joint cartilage defects requires further investigation.  相似文献   

4.
The aim of this study was to assess the effect of extracellular matrix (ECM) deposited by synovium-derived stem cells (SDSCs) on articular chondrocyte expansion and maintenance of differentiation status and redifferentiation capacity. Passage 0 (P0) pig articular chondrocytes were expanded for six passages on plastic flasks (Plastic), SDSC-derived ECM (ECM), or substrate switching from either Plastic to ECM (PtoE) or ECM to Plastic (EtoP). Cell morphology, gene expression profiles, and immunophenotypes at each passage were used to characterize differentiation status of expanded cells. Chondrocytes at P0, P2, and P6 were assessed for redifferentiation capacity in a pellet culture system treated with either TGF-β1- or serum-containing medium for 14 days, using histology, immunohistochemistry, biochemistry, Western blot, and real-time PCR. We found that ECM not only greatly enhanced chondrocyte expansion but also delayed dedifferentiation of expanded chondrocytes. Intriguingly, compared to a dramatic decrease in CD90+/CD105+ cells and CD90+ cells, CD105+ cells dramatically increased when chondrocytes were plated on Plastic; on the contrary, ECM expansion dramatically increased CD90+ cells and delayed the decrease of CD90+/CD105+ cells. Interestingly, expanded chondrocytes on ECM also acquired a strong redifferentiation capacity, particularly in the pellets treated with TGF-β1. In conclusion, the ratio of CD90 to CD105 may serve as a marker indicative of proliferation and redifferentiation capacity of dedifferentiated chondrocytes. ECM deposited by SDSCs provides a tissue-specific three-dimensional microenvironment for ex vivo expansion of articular chondrocytes while retaining redifferentiation capacity, suggesting that ECM may provide a novel approach for autologous chondrocyte-based cartilage repair.  相似文献   

5.
Peptide therapeutics are of increasing interest due to their biological specificity. We used a simple technique to study the efficacy of inducing peptides into adherent chondrocytes by transiently permeabilizing the membrane with electric pulses (in situ electroporation). Mechano-growth factor (MGF) was selected as a model peptide. FITC-labeled MGF was added to cultures of adherent primary chondrocytes grown on ITO coated glass slides. Cells were subjected to 3–9 pulses of 175–275 V and evaluated by flow cytometry. Under optimal conditions, an electroporation efficiency of close to 50% could be achieved. This technique can be used to study the functional domains of intracellular peptides, peptide inhibition of signal transduction and intracrine-mediated effects of peptides in adherent cells.  相似文献   

6.
7.
Cartilage lesions change the microenvironment of cells and may accelerate cartilage degradation through catabolic responses from chondrocytes. In this study, we investigated the effects of structural integrity of the extracellular matrix (ECM) on chondrocytes by comparing the mechanics of cells surrounded by an intact ECM with cells close to a cartilage lesion using experimental and numerical methods. Experimentally, 15% nominal compression was applied to bovine cartilage tissues using a light-transmissible compression system. Target cells in the intact ECM and near lesions were imaged by dual-photon microscopy. Changes in cell morphology (Ncell=32 for both ECM conditions) were quantified. A two-scale (tissue level and cell level) Finite Element (FE) model was also developed. A 15% nominal compression was applied to a non-linear, biphasic tissue model with the corresponding cell level models studied at different radial locations from the centre of the sample in the transient phase and at steady state. We studied the Green-Lagrange strains in the tissue and cells. Experimental and theoretical results indicated that cells near lesions deform less axially than chondrocytes in the intact ECM at steady state. However, cells near lesions experienced large tensile strains in the principal height direction, which are likely associated with non-uniform tissue radial bulging. Previous experiments showed that tensile strains of high magnitude cause an up-regulation of digestive enzyme gene expressions. Therefore, we propose that cartilage degradation near tissue lesions may be due to the large tensile strains in the principal height direction applied to cells, thus leading to an up-regulation of catabolic factors.  相似文献   

8.
Experimental studies suggest that the magnitude of chondrocyte deformation is much smaller than expected based on the material properties of extracellular matrix (ECM) and cells, and that this result could be explained by a structural unit, the chondron, that is thought to protect chondrocytes from large deformations in situ. We extended an existing numerical model of chondrocyte, ECM and pericellular matrix (PCM) to include depth-dependent structural information. Our results suggest that superficial zone chondrocytes, which lack a pericellular capsule (PC), are relatively stiff, and therefore are protected from excessive deformations, whereas middle and deep zone chondrocytes are softer but are protected by the PC that limits cell deformations in these regions. We conclude that cell deformations sensitively depend on the immediate structural environment of the PCM in a depth-dependent manner, and that the functional stiffness of chondrocytes in situ is much larger than experiments on isolated cells would suggest.  相似文献   

9.
The small GTPase Rac regulates cytoskeletal organization, cell cycle progression, gene expression and oncogenic transformation, processes that depend upon both soluble growth factors and adhesion to the extracellular matrix (ECM). We now show that growth factors and adhesion to the ECM both contribute independently and approximately equally to Rac activation. However, activated Rac in non-adherent cells failed to stimulate the Rac effector PAK. V12 Rac or Rac activated by serum translocated to the membrane fraction of adherent cells but remained mainly cytoplasmic in suspended cells. An activated Rac mutant lacking a membrane-targeting sequence did not activate PAK in adherent cells, while mutations that forced membrane targeting restored PAK activation in suspended cells. In vitro, V12 Rac showed greater binding to membranes from adherent relative to suspended cells, indicating that cell adhesion regulated membrane binding sites for Rac. These results show that ECM regulates the ability of Rac to couple with PAK via an effect on membrane binding sites that facilitate their interaction.  相似文献   

10.
The cartilage tissue has a limited self-regenerative capacity. Tissue-engineering represents a promising trend for cartilage repair. The present study was aimed to develop a biomaterial formulation by combining fragments of chitosan hydrogel with isolated rabbit or human chondrocytes. We first reported the properties of the constructs elaborated with rabbit chondrocytes and pure chitosan physical hydrogels with defined molecular weight, acetylation degree and polymer concentration. Morphological data showed that chondrocytes were not penetrating the hydrogels but tightly bound to the surface of the fragments and spontaneously formed aggregates of combined cell/chitosan. A significant amount of neo-formed cartilage-like extracellular matrix (ECM) was first accumulated in-between cells and hydrogel fragments and furthermore was widely distributed within the neo-construct. The optimal biological response was obtained with hydrogel fragments concentrated at 1.5% (w/w) of polymer made from a chitosan with a degree of acetylation between 30 and 40%. Such hydrogels were then mixed with human chondrocytes. The phenotype of the cells was analyzed by using chondrocytic (mRNA expression of mature type II collagen and aggrecan as well as secretion of proteoglycans of high molecular weight) and non chondrocytic (mRNA expression of immature type II collagen and type I collagen) molecular markers. As compared with human chondrocytes cultured without chitosan hydrogel which rapidly dedifferentiated in primary culture, cells mixed with chitosan rapidly loose the expression of type I and immature type II collagen while they expressed mature type II collagen and aggrecan. In these conditions, chondrocytes maintained their phenotype for as long as 45 days, thus forming cartilage-like nodules. Taken together, these data suggest that a chitosan hydrogel does not work as a scaffold, but could be considered as a decoy of cartilage ECM components, thus favoring the binding of chondrocytes to chitosan. Such a biological response could be described by the concept of reverse encapsulation.  相似文献   

11.
Butyric acid induces characteristic changes in the morphology of chick embryo chondrocytes. Chick embryo chondrocytes when cultured in the absence of butyrate exhibit a spherical morphology and synthesize cartilage-specific chondroitin sulfate proteoglycan (CSPG). When these cultures are initiated and maintained in the presence of butyric acid, chondrocytes exhibit a mesenchymal morphology, a 90% reduction in the synthesis of CSPG, and a 75% reduction in DNA synthesis. The reduced synthesis of CSPG and DNA was shown not to be dependent on the morphological change. Chondrocytes require CSPG in order to express a spherical morphology, since including chondroitinase ABC in the culture media caused the cells to spread. In addition, the treatment of chondrocytes with purified CSPG prior to culture in media containing butyric acid resulted in spherical cells. The butyrate-induced spreading was shown to require either serum or fibronectin and could be prevented with antiserum against chick cell-surface fibronectin (cFn). Cell-surface fibronectin, which was present on both spherical and flattened chondrocytes, organized into fibrils beneath cells which spread. Increased fibronectin synthesis was not responsible for the butyrate-induced morphological change. From this evidence, it is concluded that the mechanism by which butyrate alters the morphology of these cells in culture involves inhibiting CSPG synthesis, thus preventing CSPG accumulation in the extracellular matrix (ECM). The absence of CSPG in the ECM allows fibronectin to mediate spreading of chondrocytes in culture.  相似文献   

12.
Scaffold-free cartilage by rotational culture for tissue engineering   总被引:4,自引:0,他引:4  
Our objective was to investigate the hypothesis that tissue-engineered cartilage with promising biochemical, mechanical properties can be formed by loading mechanical stress under existing cell-cell interactions analogous to those that occur in condensation during embryonic development. By loading dedifferentiated chondrocytes with mechanical stress under existing cell-cell interactions, we could first form a scaffold-free cartilage tissue with arbitrary shapes and a large size with promising biological, mechanical properties. The cartilage tissue which constituted of chondrocytes and ECM produced by inoculated dedifferentiated chondrocytes to a high porous simple mold has arbitrary shapes, and did not need any biodegradable scaffold to control the shape. In contrast, scaffold-free cartilage tissue cultured under static conditions could not keep their shapes; it was fragile tissue. The possibility of scaffold-free organ design was suggested because the cartilage tissue increases steadily in size with culture time; indeed, the growth of cartilage tissue starting from an arbitrary shape might be predictable by mathematical expression. For tissue-engineered cartilage formation with arbitrary shapes, biochemical and mechanical properties, loading dedifferentiated chondrocytes with mechanical stress under existing cell-cell interactions has prominent effects. Therefore, our scaffold-free cartilage model loaded mechanical stress based on a simple mold system may be applicable for tissue-engineered cartilage.  相似文献   

13.
The past two decades triterpenes have attracted attention because of their pharmacological potential, especially its anti-oxidant activity. The present study was aimed to evaluate the possible protective effects of the triterpene betulin on porcine chondrocytes. For this, the cells were treated with different doses of betulin (0.02, 0.32 and 5.12 μg/mL) and without betulin. Biochemical measures of necrosis, mitochondrial activity, DNA content and sulphated glycosaminoglycans (sGAG) were reported. In addition, the gene expression of extracellular matrix molecules (ECM), proteases and soluble factors were examined. The abundance of reactive oxygen species (ROS) was also reported. Among the concentrations tried 0.32 μg/mL of betulin was found to be optimum because it effectively promoted the gene expressions of type II collagen, aggrecan and inhibited the gene expression of matrix metalloproteinase 2 (MMP-2). The chemiluminescence (CL) assay indicated that betulin treated chondrocytes had better free radical scavenging activity than the chondrocytes cultured without betulin. Alcian blue staining revealed that the chondrocytes were functionally active and able to synthesis sGAG. The free radical scavenging activity ensures betulin as protectant of chondrocytes and it further maintains the proliferation and basic activities of chondrocytes.  相似文献   

14.
The aim of this study was to explore the role of hsa_circRNA_0000205 (circ_0000205) in chondrocyte injury in osteoarthritis (OA) and the underlying mechanism. Expression of circ_0000205, microRNA (miR)-766-3p and a disintegrin and metalloproteinase with thrombospondin motif (ADAMTS)-5 was detected by quantitative real time (qRT)-polymerase chain reaction (PCR) and Western blot assays. Cell proliferation, apoptosis, and extracellular matrix (ECM) synthesis were examined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 5-ethynyl-2-deoxyuridine assays, flow cytometry, and qRT-PCR and Western blot assays. The target relationship between miR-766-3p and circ_0000205 or ADAMTS5 was confirmed by luciferase reporter assay and RNA immunoprecipitation. IL-1β treatment could attenuate cell viability of primary chondrocytes and proliferating cell nuclear antigen (PCNA) and collagen II type alpha-1 (COL2A1) levels, and elevate apoptosis rate and cleaved caspase-3, ADAMTS5 and matrix metalloproteinase-13 (MMP13) levels, suggesting that IL-1β induced chondrocyte apoptosis and ECM degradation. Expression of circ_0000205 was up-regulated in OA tissues and IL-1β-induced primary chondrocytes, accompanied with miR-766-3p down-regulation and ADAMTS5 up-regulation. Knockdown of circ_0000205 could mitigate IL-1β-induced above effects and improve cell proliferation. Moreover, both depleting miR-766-3p and promoting ADAMTS5 could partially counteract circ_0000205 knockdown roles in IL-1β-cultured primary chondrocytes. Notably, circ_0000205 was verified as a sponge for miR-766-3p via targeting, and ADAMTS5 was a direct target for miR-766-3p. Silencing circ_0000205 could protect chondrocytes from IL-1β-induced proliferation reduction, apoptosis, and ECM degradation by targeting miR-766-3p/ADAMTS5 axis.  相似文献   

15.
MicroRNA-145 has been shown to regulate chondrocyte homeostasis. It seems that miR-145 is implicated in cartilage dysfunction in Osteoarthritis (OA). However, the functional role of miR-145 in interleukin-1 beta (IL-1β)-induced extracellular matrix (ECM) degradation of OA cartilage has never been clarified. Here, we show that miR-145 expression increased in OA chondrocytes and in response to IL-1β stimulation. We confirm that mothers against decapentaplegic homolog 3 (Smad3), a key factor in maintaining chondrocyte homeostasis, is directly regulated by miR-145. Modulation of miR-145 affects the expression of Smad3 causing a change of its downstream target gene expression as well as IL-1β-induced ECM degradation in OA chondrocytes. This indicates that miR-145 contributes to impaired ECM in OA cartilage probably in part via targeting Smad3.  相似文献   

16.
Tissue inhibitors of metalloproteinases (TIMPs) inhibit the extracellular matrix (ECM) metalloproteinases (MMPs). To determine the source of TIMPs in synovial fluids of patients with osteoarthritis (OA), the ability of chondrocytes to express TIMP-2 and its regulation by agents found in inflammed joints was investigated. The constitutive TIMP-2 mRNA expression was demonstrated in chondrocytes from normal bovine, human OA and normal cartilage. The cross-hybridization of human and bovine TIMP-2 suggested its evolutionary conservation. Serum, IL-1, IL-6 and TGF-β were unable to augment considerably the basal expression of TIMP-2 mRNA. TIMP-1 RNA expression in chondrocytes from human OA cartilage was elevated compared to non-OA chondrocytes, while TIMP-2 mRNA levels were similar in both. IL-1β, IL-6 and TGF-β did not affect TIMP-2 expression but TGF-β induced TIMP-1 mRNA in human OA chondrocytes. TIMP-2 and TIMP-1 are therefore differentially regulated in chondrocytes and the basal TIMP-2 levels may be needed for the cartilage ECM integrity. © 1996 Wiley-Liss, Inc.  相似文献   

17.
Growth factor activity has been identified in the chondrocytes and extracellular matrix (ECM) fractions of human costal cartilage. There was about five times more growth factor activity in the ECM than was found to be associated with the chondrocytes. The growth factor activity in chondrocytes was found to be associated with chromatin. Both the chromatin-associated growth factor (CAGF) activity and extracellular matrix growth factor (EMGF) activity were characterized for molecular weight, charge, and the effect of reduction by sulfhydryl reducing reagents. Biorex cation exchange chromatography showed that both CAGF and EMGF were cationic. CAGF and EMGF have molecular weights between 15,000 and 18,000 as determined by size exclusion chromatography on HPLC TSK 3000 columns equilibrated with guanidine-HCl and dithiothreitol.  相似文献   

18.
Computational analyses have been used to study the biomechanical microenvironment of the chondrocyte that cannot be assessed by in vitro experimental studies; yet all computational studies thus far have focused on the effect of zonal location (superficial, middle, and deep) on the mechanical microenvironment of chondrocytes. The aim of this paper was to study the effect of both zonal and radial locations on the biomechanical microenvironment of chondrocytes in inhomogeneous cartilage under unconfined stress relaxation. A biphasic multiscale approach was employed and nine chondrocytes in different locations were studied. Hyperelastic biphasic theory and depth-dependent aggregate modulus and permeability of articular cartilage were included in the models. It was found that both zonal and radial locations affected the biomechanical stresses and strains of the chondrocytes. Chondrocytes in the mid-radial location had increased volume during the early stage of the loading process. Maximum principal shear stress at the interface between the chondrocyte and the extracellular matrix (ECM) increased with depth, yet that at the ECM–pericellular matrix (PCM) interface had an inverse trend. Fluid pressure decreased with depth, while the fluid pressure difference between the top and bottom boundaries of the microscale model increased with depth. Regardless of location, fluid was exchanged between the chondrocyte, PCM, and ECM. These findings suggested that even under simple compressive loading conditions, the biomechanical microenvironment of the chondrocytes, PCM and ECM was spatially dependent. The current study provides new insight on chondrocyte biomechanics.  相似文献   

19.
20.
Articular cartilage has a limited ability to self-repair because of its avascular nature and the low mitotic activity of the residing chondrocytes. There remains a significant need to develop therapeutic strategies to increase the regenerative capacity of cells that could repair cartilage. Multiple cell types, including chondrocytes and mesenchymal stem cells, have roles in articular cartilage regeneration. In this study, we evaluated a platform technology of multiple functionalized hexosamines, namely 3,4,6-O-tributanoylated-N-acetylgalactosamine (3,4,6-O-Bu3GalNAc), 3,4,6-O-tributanoylated-N-acetylmannosamine (3,4,6-O-Bu3ManNAc) and 3,4,6-O-Bu3GlcNAc, with the potential ability to reduce NFκB activity. Exposure of IL-1β-stimulated chondrocytes to the hexosamine analogs resulted in increased expression of ECM molecules and a corresponding improvement in cartilage-specific ECM accumulation. The greatest ECM accumulation was observed with 3,4,6-O-Bu3GalNAc. In contrast, mesenchymal stem cells (MSCs) exposed to 3,4,6-O-Bu3GalNAc exhibited a dose dependent decrease in chondrogenic differentation as indicated by decreased ECM accumulation. These studies established the disease modification potential of a hexosamine analog platform on IL-1β-stimulated chondrocytes. We determined that the modified hexosamine with the greatest potential for disease modification is 3,4,6-O-Bu3GalNAc. This effect was distinctly different with 3,4,6-O-Bu3GalNAc exposure to chondrogenic-induced MSCs, where a decrease in ECM accumulation and differentiation was observed. Furthermore, these studies suggest that NFκB pathway plays a complex role cartilage repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号