首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
抗菌肽是生物体抵御外界病原体侵袭时产生的一类保守的小分子多肽,是生物体内先天免疫防御机制的重要组分。抗菌肽可以选择性杀伤肿瘤细胞,而对正常细胞损害较小,已作为化、放疗药物潜在的替代品被广泛研究和开发。从抗菌肽对不同肿瘤细胞选择性作用机制、抗菌肽药物设计的发展及应用前景等方面进行综述。  相似文献   

2.
Papo N  Shai Y 《Peptides》2003,24(11):1693-1703
Cationic antibacterial peptides are produced in all living organisms and possess either selective activity toward a certain type of cell or microorganism, or a broad spectrum of activity toward several types of cells including prokaryotic and mammalian cells. In order to exert their activity, peptides first interact with and traverse an outer barrier, e.g., mainly LPS and peptidoglycan in bacteria or a glycocalix layer and matrix proteins in mammalian cells. Only then, can the peptides bind and insert into the cytoplasmic membrane. The mode of action of many antibacterial peptides is believed to be the disruption of the lipidic plasma membrane. Therefore, model phospholipid membranes have been used to study the mode of action of antimicrobial peptides. These studies have demonstrated that peptides that act preferentially on bacteria are also able to interact with and permeate efficiently anionic phospholipids, whereas peptides that lyse mammalian cells bind and permeate efficiently both acidic and zwitterionic phospholipids membranes, mimicking the plasma membranes of these cells. It is now becoming increasingly clear that selective activity of these peptides against different cells depends also on other parameters that characterize both the peptide and the target cell. With respect to the peptide's properties, these include the volume of the molecule, its structure, and its oligomeric state in solution and in membranes. Regarding the target membrane, these include the structure, length, and complexity of the hydrophilic polysaccharide found in its outer layer. These parameters affect the ability of the peptides to diffuse through the cell's outer barrier and to reach its cytoplasmic plasma membrane.  相似文献   

3.
Mechanistic Properties of the Two-Component Bacteriocin Lactococcin G   总被引:10,自引:2,他引:8       下载免费PDF全文
Lactococcin G is a bacteriocin whose activity depends on the complementary action of two peptides, termed α and β. Biologically active, synthetic lactococcin G was used to study the mode of action on sensitive cells of Lactococcus lactis. The α and β peptides can bind independently to the target cell surface, but activity requires the complementary peptide. Once bound to the cell surface, the peptides cannot be displaced to the surfaces of other cells. A complex of α and β peptides forms a transmembrane pore that conducts monovalent cations but not protons. Efflux of potassium ions is observed only above pH 5.0, and the rate of efflux increases steeply with the pH. The consequences of cation fluxes for the viability of the target cells are discussed.  相似文献   

4.
Anticancer peptides are polycationic amphiphiles capable of preferentially killing a wide spectrum of cancer cells relative to noncancerous cells. Their primary mode of action is an interaction with the cell membrane and subsequent activation of lytic effects; however, the exact mechanism responsible for this mode of action remains controversial. Using zeta potential analyses we demonstrate the interaction of a small anticancer peptide with membrane model systems and cancer cells. Electrostatic interactions have a pivotal role in the cell killing process, and in contrast to the antimicrobial peptides action cell death occurs without achieving full neutralization of the membrane charge.  相似文献   

5.
The therapeutic, antibiotic potential of antimicrobial peptides can be prohibitively diminished because of the cytotoxicity and hemolytic profiles they exhibit. Quantifying and predicting antimicrobial peptide toxicity against host cells is thus an important goal of AMP related research. In this work, we present quantitative structure activity relationships for toxicity of protegrin-like antimicrobial peptides against human cells (epithelial and red blood cells) based on physicochemical properties, such as interaction energies and radius of gyration, calculated from molecular dynamics simulations of the peptides in aqueous solvent. The hypothesis is that physicochemical properties of peptides, as manifest by their structure and interactions in a solvent and as captured by atomistic simulations, are responsible for their toxicity against human cells. Protegrins are beta-hairpin peptides with high activity against a wide variety of microbial species, but in their native state are toxic to human cells. Sixty peptides with experimentally determined toxicities were used to develop the models. We test the resulting relationships to determine their ability to predict the toxicity of several protegrin-like peptides. The developed QSARs provide insight into the mechanism of cytotoxic action of antimicrobial peptides. In a subsequent blind test, the QSAR correctly ranked four of five protegrin analogues newly synthesized and tested for toxicity.  相似文献   

6.
The effects of several amphipathic peptides on HIV-1 production in persistently infected cells are described. Melittin, a 26 amino acid alpha-helical amphipathic peptide, reduces HIV-1 production dose-dependently, whereas other amphipathic peptides do not. Six melittin derivatives which retain the alpha-helical portion have similar effects as melittin. The reduction of viral infectivity is not due to an effect of melittin on the virus particles but to an intracellular action of the peptide, which is readily taken up into cells, as shown by quantitative ELISA. Western blots of cells from melittin-treated cultures suggest that the processing of the gag/pol precursor is impaired.  相似文献   

7.
Proopiomelanocortin (POMC) peptides are produced by many cell systems, including a population of macrophage-like cells in mouse spleen. After transplantation of mice with Ehrlich ascites tumor cells, the number of POMC producing spleen cells increase up to 10-fold by 5 to 6 days. The POMC peptides produced by these cells increase even more, as evidenced by radioimmunoassay. Thus, these data indicate both proliferation of splenic POMC cells and increased production of POMC peptides per cell after tumor challenge. Characterization of the peptides by sequence-specific radioimmunoassays and high performance liquid chromatography documents the presence of both ACTH(1-39) and of ACTH(1-14) in these cells. These peptides have multifacetted effects on immune parameters and may exhibit a general antiinflammatory action, partly mediated through inhibition of interleukin 1-stimulated events. The tumor cells themselves do not produce POMC peptides, but display met- and leu-enkephalin immunoreactivity. Also cultured tumor cells display such immunoreactivity, indicating endogenous production of opioid peptides. The opioid peptides of the tumor cells may both affect host immune defenses and play intratumoral autocrine or paracrine roles.  相似文献   

8.
Permeation of the cell membrane leading to cell death is a mechanism used by a large number of membrane-lytic peptides. Some are linear, mostly helical, and others contain one or more disulfide bonds forming beta-sheet or both beta-sheet and alpha-helix structures. They are all soluble in solution but when they reach the target membrane, conformational changes occur which let them associate with and lyse the membrane. Some lytic peptides are not cell-selective and lyse different microorganisms and normal mammalian cells, while others are specific to either type of cells. Despite extensive studies, the mode of action of membrane-lytic peptides is not fully understood and the basis for their selectivity towards specific target cells is not known. Many studies have shown that peptide-lipid interactions leading to membrane permeation play a major role in their activity. Membrane permeation by amphipathic alpha-helical peptides has been proposed to occur via one of two general mechanisms: (i) transmembrane pore formation via a 'barrel-stave' mechanism; and (ii) membrane destruction/solubilization via a 'carpet' mechanism. This review, which is focused on the different stages of membrane permeation induced by representatives of amphipathic alpha-helical antimicrobial and cell non-selective lytic peptides distinguishes between the 'carpet' mechanism, which holds for antimicrobial peptides versus the 'barrel-stave' mechanism, which holds for cell non-selective lytic peptides.  相似文献   

9.
Papo N  Shai Y 《Biochemistry》2003,42(31):9346-9354
Despite significant advances in cancer therapy, there is an urgent need for drugs with a new mode of action that will preferentially kill cancer cells. Several cationic antimicrobial peptides, which bind strongly to negatively charged membranes, were shown to kill cancer cells slightly better than normal cells. This was explained by a slight increase (3-9%) in the level of the negatively charged membrane phosphatidylserine (PS) in many cancer cells compared to their normal counterparts. Unfortunately, however, these peptides are inactivated by serum components. Here we synthesized and investigated the anticancer activity and the role of peptide charge, peptide structure, and phospholipid headgroup charge on the activity of a new group of diastereomeric lytic peptides (containing D- and L-forms of leucine and lysine; 15-17 amino acids long). The peptides are highly toxic to cancer cells, to a degree similar to or larger than that of mitomycin C. However, compared with mitomycin C and many native antimicrobial peptides, they are more selective for cancer cells. The peptides were investigated for (i) their binding to mono- and bilayer membranes by using the surface plasmon resonance (SPR) technique, (ii) their ability to permeate membranes by using fluorescence spectroscopy, (iii) their structure and their effect on the lipid order by using ATR-FTIR spectroscopy, and (iv) their ability to bind to cancer versus normal cells by using confocal microscopy. The data suggest that the peptides disintegrate the cell membrane in a detergent-like manner. However, in contrast to native antimicrobial peptides, the diastereomers bind and permeate similarly zwitterionic and PS-containing model membranes. Therefore, cell selectivity is probably determined mainly by improved electrostatic attraction of the peptides to acidic components on the surface of cancer cells (e.g., O-glycosylation of mucines). The simple composition of the diastereomeric peptides and their stability regarding enzymatic degradation by serum components make them excellent candidates for new chemotherapeutic drugs.  相似文献   

10.
Antimicrobial peptides (AMPs) take part in the immune system by mounting a first line of defense against pathogens. Recurrent structural and functional aspects are observed among peptides from different sources, particularly the net cationicity and amphipathicity. However, the membrane seems to be the key determinant of their action, either as the main target of the peptide action or by forming a barrier that must be crossed by peptides to target core metabolic pathways. More importantly, the specificity exhibited by antimicrobial peptides relies on the different lipid composition between pathogen and host cells, likely contributing to their spectrum of activity. Several mechanisms of action have been reported, which may involve membrane permeabilization through the formation of pores, membrane thinning or micellization in a detergent-like way. AMPs may also target intracellular components, such as DNA, enzymes and even organelles. More recently, these peptides have been shown to produce membrane perturbation by formation of specific lipid-peptide domains, lateral phase segregation of zwitterionic from anionic phospholipids and even the formation of non-lamellar lipid phases. To countermeasure their activity, some pathogens were successful in developing effective mechanisms of resistance to decrease their susceptibility to AMPs. The functional and integral knowledge of such interactions and the clarification of the complex interplay between molecular determinants of peptides, the pathogen versus host cells dichotomy and the specific microenvironment in which all these elements convene will contribute to an understanding of some elusive aspects of their action and to rationally design novel therapeutic agents to overcome the current antibiotic resistance issue.  相似文献   

11.
BackgroundThe comprehension of the mechanism of action of antimicrobial peptides is fundamental for the design of new antibiotics. Studies performed looking at the interaction of peptides with bacterial cells offer a faithful picture of what really happens in nature.MethodsIn this work we focused on the interaction of the peptide Temporin L with E. coli cells, using a variety of biochemical and biophysical techniques that include: functional proteomics, docking, optical microscopy, TEM, DLS, SANS, fluorescence.ResultsWe identified bacterial proteins specifically interacting with the peptides that belong to the divisome machinery; our data suggest that the GTPase FtsZ is the specific peptide target. Docking experiments supported the FtsZ-TL interaction; binding and enzymatic assays using recombinant FtsZ confirmed this hypothesis and revealed a competitive inhibition mechanism. Optical microscopy and TEM measurements demonstrated that, upon incubation with the peptide, bacterial cells are unable to divide forming long necklace-like cell filaments. Dynamic light scattering studies and Small Angle Neutron Scattering experiments performed on treated and untreated bacterial cells, indicated a change at the nanoscale level of the bacterial membrane.ConclusionsThe peptide temporin L acts by a non-membrane-lytic mechanism of action, inhibiting the divisome machinery.General significanceIdentification of targets of antimicrobial peptides is pivotal to the tailored design of new antimicrobials.  相似文献   

12.
The adaptive immune response depends on the creation of suitable peptides from foreign antigens for display on MHC molecules to T lymphocytes. Similarly, MHC-restricted display of peptides derived from self proteins results in the elimination of many potentially autoreactive T cells. Different proteolytic systems are used to generate the peptides that are displayed as T cell epitopes on class I compared with class II MHC molecules. In the case of class II MHC molecules, the proteases that reside within the endosome/lysosome system of antigen-presenting cells are responsible; surprisingly, however, there are relatively few data on which enzymes are involved. Recently we have asked whether proteolysis is required simply in a generic sense, or whether the action of particular enzymes is needed to generate specific class II MHC-associated T cell epitopes. Using the recently identified mammalian asparagine endopeptidase as an example, we review recent evidence that individual enzymes can make clear and non-redundant contributions to MHC-restricted peptide display.  相似文献   

13.
Antimicrobial peptides are important host-defense molecules of innate immunity. Cathelicidins are a diverse family of potent, rapidly acting and broadly effective antimicrobial peptides, which are produced by a variety of cells. This review examines the classification, antimicrobial spectrum, mechanism of action, and regulation of cathelicidins.  相似文献   

14.
There is a dearth of chemical inhibitors of connexin-mediated intercellular communication. The advent of short “designer” connexin mimetic peptides has provided new tools to inhibit connexin channels quickly and reversibly. This perspective describes the development of mimetic peptides, especially Gap 26 and 27 that are the most popular and correspond to specific sequences in the extracellular loops of connexins 37, 40 and 43. Initially they were used to inhibit gap-junctional coupling in a wide range of mammalian cells and tissues. Currently, they are also being examined as therapeutic agents that accelerate wound healing and in the early treatment of spinal cord injury. The mimetic peptides bind to connexin hemichannels, influencing channel properties as shown by lowering of electrical conductivity and potently blocking the entry of small reporter dyes and the release of ATP by cells. A mechanism is proposed to help explain the dual action of connexin mimetic peptides on connexin hemichannels and gap-junctional coupling.  相似文献   

15.
昆虫抗菌肽是由昆虫细胞特定基因编码、由细胞核糖体合成的,具有体液免疫功能的一类碱性多肽,对细菌、真菌、病毒和原虫,甚至癌细胞都具有杀伤作用,有望开发成为新一代的抗菌药物。随着抗菌肽家族的不断扩大,其各方面的研究也日益深入。简要综述了昆虫抗菌肽的种类及结构特点、作用机制、生物活性、构效关系、药物开发情况。  相似文献   

16.
Animal peptide antibiotics are thought to mediate their cytotoxic and growth inhibitory action on bacteria, fungi, and cancer cells through a membrane-targeted mechanism. Although the membrane interactions of the peptide antibiotics and their penetration through the membranes have been studied in several models, the precise chain of events leading to cell death or growth arrest is not established yet. In this study we used in vitro kinase assays followed by imaging analyses to examine the effect of human cationic antimicrobial peptide ECAP on the activity of the protein kinases. We report that HPLC-grade ECAP is responsible for inhibition of EGFR autophosphorylation in plasma membrane fractions obtained from A-431 cells. The activity of ECAP is concentration dependent with a half-inhibitory concentration in the range of 0.1-0.2 microM. Marked decrease in autophosphorylation of immunoprecipitated non-receptor protein kinases belonging to different families, namely PKCmu, Lyn and Syk, is observed in the presence of as little as 0.2 microM of the peptide. Among the examined non-receptor protein kinases PKCmu was the most sensitive to the inhibitory action of ECAP, whereas Syk was inhibited least of all. ECAP exerted no detectable cytotoxicity on non-nucleate animal cells at concentrations up to 3 microM. The capability of ECAP to inhibit protein kinases at concentrations, that are at least 10 fold lower than antibacterial and cytotoxic ones, suggests that the protein kinases are possible intracellular targets for antimicrobial peptides. We suppose that inhibition of the protein kinases may provide a mechanism for the action of cationic antimicrobial peptides on host cells including tumour cells.  相似文献   

17.
Li WF  Ma GX  Zhou XX 《Peptides》2006,27(9):2350-2359
Apidaecins (apidaecin-type peptides) refer to a series of small, proline-rich (Pro-rich), 18- to 20-residue peptides produced by insects. They are the largest group of Pro-rich antimicrobial peptides (AMPs) known to date. Structurally, apidaecins consist of two regions, the conserved (constant) region, responsible for the general antibacterial capacity, and the variable region, responsible for the antibacterial spectrum. The small, gene-encoded and unmodified apidaecins are predominantly active against many gram-negative bacteria by special antibacterial mechanisms. The mechanism of action by which apidaecins kill bacteria involves an initial non-specific binding of the peptides to an outer membrane (OM) component. This binding is followed by invasion of the periplasmic space, and by a specific and essentially irreversible combination with a receptor/docking molecule that may be a component of a permease-type transporter system on inner membrane (IM). In the final step, the peptide is translocated into the interior of the cell where it meets its ultimate target. Evidence that apidaecins are non-toxic for human and animal cells is a prerequisite for using them as novel antibiotic drugs. This review presents the biodiversity, structure-function relationships, and mechanism of action of apidaecins.  相似文献   

18.
CD8+ T cells are the main effector cells for the immune control of cytomegaloviruses. To subvert this control, human and mouse cytomegaloviruses each encode a set of immune-evasion proteins, referred to here as immunoevasins, which interfere specifically with the MHC class I pathway of antigen processing and presentation. Although the concerted action of immunoevasins prevents the presentation of certain viral peptides, other viral peptides escape this blockade conditionally or constitutively and thereby provide the molecular basis of immune surveillance by CD8+ T cells. The definition of viral antigenic peptides that are presented despite the presence of immunoevasins adds a further dimension to the prediction of protective epitopes for use in vaccines.  相似文献   

19.
Attachment of traditional anticancer drugs to cell penetrating peptides is an effective strategy to improve their application in cancer treatment. In this study, we designed and synthesized the conjugates TAT-CPT and TAT-2CPT by attaching camptothecin (CPT) to the N-terminus of the cell penetrating peptide TAT. Interestingly, we found that TAT-CPT and especially TAT-2CPT could kill cancer cells via membrane disruption, which is similar to antimicrobial peptides. This might be because that CPT could perform as a hydrophobic residue to increase the extent of membrane insertion of TAT and the stability of the pores. In addition, TAT-CPT and TAT-2CPT could also kill cancer cells by the released CPT after they entered cells. Taken together, attachment of CPT could turn cell penetrating peptide TAT into an antimicrobial peptide with a dual mechanism of anticancer action, which presents a new strategy to develop anticancer peptides based on cell penetrating peptides.  相似文献   

20.
Rat prothyrotropin-releasing hormone (pro-TRH) is endoproteolyzed within the regulated secretory pathway of neuroendocrine cells yielding five TRH peptides and seven to nine other unique peptides. Endoproteolysis is performed by two prohormone convertases, PC1 and PC2. Proteolysis of pro-TRH begins in the trans-Golgi network and forms two intermediates that are then differentially processed as they exit the Golgi and are packaged into immature secretory granules. We hypothesized that this initial endoproteolysis may be necessary for downstream sorting of pro-TRH-derived peptides as it occurs before Golgi exit and thus entry into the regulated secretory pathway. We now report that when pro-TRH is transiently expressed in GH4C1 cells, a neuroendocrine cell line lacking PC1, under pulse-chase conditions release is constitutive and composed of more immature processing intermediates. This is also observed by radioimmunoassay under steady-state conditions. When a mutant form of pro-TRH, which has the dibasic sites of initial processing mutated to glycines, is expressed in AtT20 cells, a neuroendocrine cell line endogenously expressing PC1, both steady-state and pulse-chase experiments revealed that peptides derived from this mutant precursor are secreted in a constitutive fashion. A constitutively secreted form of PC1 does not target pro-TRH peptides to the constitutive secretory pathway but results in sorting to the regulated secretory pathway. These results indicated that initial processing action of PC1 on pro-TRH in the trans-Golgi network, and not a cargo-receptor relationship, is important for the downstream sorting events that result in storage of pro-TRH-derived peptides in mature secretory granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号