首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The covalently-attached fatty acid of the membrane glycoprotein (G) of vesicular stomatitis virus was fluorescently labeled biologically by isolating vesicular stomatitis virus from infected baby hamster kidney clone 21 cells that had been grown in the presence of 16(9-anthroyloxy)palmitate. The fluorescent labeling was specific for the G protein; the other viral membrane protein, the matrix (M) protein, was not labeled. Steady state fluorescence anisotropy of the 16(9-anthroyloxy)palmitate-labeled G protein reconstituted into dipalmitoylphosphatidylcholine vesicles indicated that the fatty acid attached to G protein is located in a dipalmitoylphosphatidylcholine domain that does not undergo the gel to liquid-crystalline phase transition.  相似文献   

2.
Three strains of Sphingomonas were grown as biofilms and tested for binding of five fluorescently labeled lectins (Con A-type IV-TRITC or -Cy5, Pha-E-TRITC, PNA-TRITC, UEA 1-TRITC, and WGA-Texas red). Only ConA and WGA were significantly bound by the biofilms. Binding of the five lectins to artificial biofilms made of the commercially available Sphingomonas extracellular polysaccharides was similar to binding to living biofilms. Staining of the living and artificial biofilms by ConA might be explained as binding of the lectin to the terminal mannosyl and terminal glucosyl residues in the polysaccharides secreted by Sphingomonas as well as to the terminal mannosyl residue in glycosphingolipids. Staining of the biofilms by WGA could only be explained as binding to the Sphingomonas glycosphingolipid membrane, binding to the cell wall, or nonspecific binding. Glycoconjugation of ConA and WGA with the target sugars glucose and N-acetylglucosamine, respectively, was used as a method for evaluation of the specificity of the lectins towards Sphingomonas biofilms and Sphingomonas polysaccharides. Our results show that the binding of lectins to biofilms does not necessarily prove the presence of specific target sugars in the extracellular polymeric substances (EPS) in biofilms. The lectins may bind to non-EPS targets or adhere nonspecifically to components of the biofilm matrix.  相似文献   

3.
Theophylline is a potent bronchodilator with a narrow therapeutic index. A simple fluorescent biosensor that detects clinically relevant theophylline concentrations has been developed using the well-characterized theophylline binding RNA aptamer. Hybridization of the RNA aptamer to a fluorescently labeled DNA strand (FL-DNA) yields a fluorescent RNA:DNA hybrid that is sensitive to theophylline. The biosensor retains the remarkable selectivity of the RNA aptamer for theophylline over caffeine and is sensitive to 0-2 muM theophylline, well below the clinically relevant concentration (5-20 mg/L or approximately 10-50 muM). Adding a dabcyl quenching dye to the 3'-terminus of the fluorescently labeled DNA strand yielded a dual-labeled DNA strand (FL-DNA-Q) and increased the dynamic range of this simple biosensor from 1.5-fold to 4-fold.  相似文献   

4.
Theophylline is a potent bronchodilator with a narrow therapeutic index. A simple fluorescent biosensor that detects clinically relevant theophylline concentrations has been developed using the well-characterized theophylline binding RNA aptamer. Hybridization of the RNA aptamer to a fluorescently labeled DNA strand (FL-DNA) yields a fluorescent RNA:DNA hybrid that is sensitive to theophylline. The biosensor retains the remarkable selectivity of the RNA aptamer for theophylline over caffeine and is sensitive to 0–2 μM theophylline, well below the clinically relevant concentration (5–20 mg/L or ~10–50 μM). Adding a dabcyl quenching dye to the 3′-terminus of the fluorescently labeled DNA strand yielded a dual-labeled DNA strand (FL-DNA-Q) and increased the dynamic range of this simple biosensor from 1.5-fold to 4-fold.  相似文献   

5.
Using combinations of different polysaccharides as glycosyl donors and of oligosaccharides fluorescently labeled by sulforhodamine (SR) as glycosyl acceptors, we screened for the presence of transglycosylating activities in extracts from nasturtium (Tropaeolum majus). Besides xyloglucan endotransglycosylase/hydrolase (XTH/XET, EC 2.4.1.207) activity, which transfers xyloglucanosyl residues from xyloglucan (XG) to XG-derived oligosaccharides (XGOs), a glycosyl transfer from XG to SR-labeled cellooligosaccharides and laminarioligosaccharides has been detected. The XGOs also served as acceptors for the glycosyl transfer from soluble cellulose derivatives carboxymethyl cellulose and hydroxyethylcellulose. The effectivity of these polysaccharides as glycosyl donors for transfer to XG-derived octasaccharide [1-3H]XXLGol decreased in the order XG > HEC > CMC. Isoelectric focusing in polyacrylamide gels showed that bands corresponding to hetero-transglycosylase activities coincided with zones corresponding to XTH/XET. These results can be explained as due either to substrate non-specificity of certain isoenzymes of XTH/XET or to existence of enzymes catalyzing a hetero-transfer, that is the formation of covalent linkages between different types of carbohydrate polymers.  相似文献   

6.
7.
A new method for the simultaneous detection of rotational mobility and proximity of cell surface receptors is presented based on cell-by-cell basis measurement of polarized fluorescence intensity components of the donor and acceptor of a FRET system. In addition to the FRET efficiency and the donor and acceptor concentrations, the method makes also possible the determination of the rotational characteristics and the associated fraction of the donors (FRET-fraction). The method is illustrated with flow cytometric and rFLIM measurements on donor–acceptor systems comprising fluorescently labeled whole antibodies and their Fab fragments against epitopes of the MHCI and MHCII cell surface receptors on human lymphoblast cells. Fluorescence anisotropy of donor and acceptor and FRET efficiency were measured for samples of different acceptor-to-donor concentration ratios. Acceptor anisotropy proved to be more sensitive than the donor anisotropy for sensing FRET. After determining the rotational constants of the donor-conjugated antibodies by measurements of FRET in the steady state, and by rFLIM as a reference, the associated fractions of the MHCI and MHCII molecules in their clusters were determined. Besides the flow cytometer and the wide-field rFLIM used in this study, the method can be applied also in other devices capable of dual-anisotropy detection.  相似文献   

8.
The activities and structural specificities of extracellular enzymes that initiate microbial remineralization of high-molecular-weight (MW) organic matter were investigated in surface waters and sediments of an Arctic fjord of Svalbard. Hydrolysis rates of a suite of fluorescently labeled macromolecular substrates, including seven commercially available polysaccharides and three high-carbohydrate-content plankton extracts ranged from rapid to not detectable, and differed markedly between seawater and sediments. Order (fastest to slowest) of hydrolysis in surface water was laminarin, Spirulina extract, xylan>chondroitin, alginic acid, Wakame extract>arabinogalactan, fucoidan>Isochrysis extract>pullulan, while in sediments the order was pullulan, laminarin, alginic acid, Wakame extract>chondroitin, xylan>arabinogalactan, Isochrysis extract>Spirulina extract>fucoidan. These differences cannot be explained by simple scaling factors such as differences in microbial cell numbers between seawater and sediments. Other investigations have shown that microbial community composition of Svalbard sediments and of polar bacterioplankton samples differ markedly. These results demonstrate that sedimentary and seawater microbial communities also differ fundamentally in their abilities to access specific high-MW substrates. Substrate bioavailability depends on the capabilities of a microbial community, as well as the chemical and structural features of the substrate itself.  相似文献   

9.
Xyloglucan oligosaccharides fluorescently labeled with sulforhodamine have proved to be a valuable tool in the assessment of transglycosylating activity of plant xyloglucan endotransglucosylase/hydrolase (XTH; EC 2.4.1.207). Here we describe a simple and fast procedure for their preparation. Accordingly, the starting xyloglucan-derived oligosaccharides are in the first step converted to their corresponding 1-amino-1-deoxyalditols (glycamines) by incubation with ammonium acetate and NaCNBH(3) at 80 degrees C for 2-4 h, and in the second step, the glycamines are reacted with Lissamine rhodamine B sulfonyl chloride to obtain fluorescently labeled derivatives of the oligosaccharide glycamines. All operations are carried out in a single centrifuge tube and the products from the individual reaction steps are isolated on the basis of their differential solubility in organic solvents. Using the described protocol, the whole procedure can be accomplished in less than 24 h. The sulforhodamine-labeled xyloglucan oligosaccharides thus obtained proved suitable as substrates for a sensitive fluorescence assay of the transglycosylating activity of XTH.  相似文献   

10.
To determine if a living cell is necessary for the incorporation of actin, alpha-actinin, and tropomyosin into the cytoskeleton, we have exposed cell models to fluorescently labeled contractile proteins. In this in vitro system, lissamine rhodamine-labeled actin bound to attachment plaques, ruffles, cleavage furrows and stress fibers, and the binding could not be blocked by prior exposure to unlabeled actin. Fluorescently labeled alpha-actinin also bound to ruffles, attachment plaques, cleavage furrows, and stress fibers. The periodicity of fluorescent alpha-actinin along stress fibers was wider in gerbil fibroma cells than it was in PtK2 cells. The fluorescent alpha-actinin binding in cell models could not be blocked by the prior addition of unlabeled alpha-actinin suggesting that alpha-actinin was binding to itself. While there was only slight binding of fluorescent tropomyosin to the cytoskeleton of interphase cells, there was stronger binding in furrow regions of models of dividing cells. The binding of fluorescently labeled tropomyosin could be blocked by prior exposure of the cell models to unlabeled tropomyosin. If unlabeled actin was permitted to polymerize in the stress fibers in cell models, fluorescently labeled tropomyosin stained the fibers. In contrast to the labeled contractile proteins, fluorescently labeled ovalbumin and BSA did not stain any elements of the cytoskeleton. Our results are discussed in terms of the structure and assembly of stress fibers and cleavage furrows.  相似文献   

11.
We report heterogeneity in the time necessary for Exonuclease I to hydrolyze identical DNA fragments. A real-time fluorescence method measured the time required by molecules of Exonuclease I to hydrolyze single-stranded DNA that was synthesized to have two fluorescently labeled nucleotides. One fluorescently labeled nucleotide was located near the 3′ end of the DNA and the other near the 5′ end. Heterogeneity in the hydrolysis rate of the exonuclease population was inferred from the distribution of times necessary to cleave these DNA fragments. In particular, we found simple first-order kinetics, using a single hydrolysis rate, did not result in a good fit to the data. Better fits to the data were obtained if one assumed a distribution of hydrolysis rates for the exonuclease population. Under our experimental conditions, this broad distribution of rates was centered near 100 nt/s.  相似文献   

12.
A simple method of generating electric field-induced concentration gradients in planar supported bilayers has been developed. Gradients of charged, fluorescently labeled probes were visualized by epifluorescence microscopy and could be observed at field strengths as low as 1 V/cm. Steady-state concentration gradients can be described by a simple competition between random diffusion and electric field-induced drift. A model based on this principle has been used to determine the diffusion coefficient of the fluorescent probes. This technique achieves a degree of electrical manipulation of supported bilayers that offers a variety of possibilities for the development of new molecular architectures and the study of biological membranes.  相似文献   

13.
Although fluorescence photobleaching recovery (FPR) experiments are usually interpreted in terms of the translational motions of a fluorescently labeled species, rotational motions can also modulate recovery through the cosine-squared laws for dipolar absorption and emission processes. In a complex interacting system, translational and rotational contributions may both be simultaneously present. We show how these contributions can be separated in solution studies using an FPR setup in which (a) the linear polarization of the low-intensity observation beam and the high-intensity photobleaching pulse can be varied independently, and (b) all emitted fluorescent photons are counted equally. The fluorescence recovery signal obtained with the observation beam polarized at the magic angle, 54.7 degrees, from the bleach polarization direction is independent of label orientation, whereas the anisotropy function formed from a combination of parallel and perpendicular polarizations isolates the orientational recovery. The anisotropy function is identical to that in fluorescence correlation spectroscopy and, for rigid-body rotational diffusion, can be expressed as a sum of five exponential terms.  相似文献   

14.
A novel procedure for detecting raft-associated proteins by gel filtration was developed. Cells were stained with fluorescently labeled protein-specific antibodies, lyzed in a nonionic detergent and gel-filtered on Sepharose 4B. Proteins were identified with the help of fluorescently labeled antibodies. Staining of cells with fluorescently labeled antibodies prior to cell lysis significantly simplified the identification procedure. The potentialities of the new approach are demonstrated in the example of several surface proteins associated with lipid rafts either constitutively or in the course of cell activation.  相似文献   

15.
Hibbs RE  Johnson DA  Shi J  Hansen SB  Taylor P 《Biochemistry》2005,44(50):16602-16611
The three-fingered alpha-neurotoxins have played a pivotal role in elucidating the structure and function of the muscle-type and neuronal alpha7 nicotinic acetylcholine receptors (nAChRs). To advance our understanding of the alpha-neurotoxin-nAChR interaction, we examined the flexibility of alpha-neurotoxin bound to the acetylcholine-binding protein (AChBP), which shares structural similarity and sequence identities with the extracellular domain of nAChRs. Because the crystal structure of five alpha-cobratoxin molecules bound to AChBP shows the toxins projecting radially like propeller "blades" from the perimeter of the donut-shaped AChBP, the toxin molecules should increase the frictional resistance and thereby alter the hydrodynamic properties of the complex. alpha-Bungarotoxin binding had little effect on the frictional coefficients of AChBP measured by analytical ultracentrifugation, suggesting that the bound toxins are flexible. To support this conclusion, we measured the anisotropy decay of four site-specifically labeled alpha-cobratoxins (conjugated at positions Lys(23), Lys(35), Lys(49), and Lys(69)) bound to AChBP and free in solution and compared their anisotropy decay properties with fluorescently labeled cysteine mutants of AChBP. The results indicated that the core of the toxin molecule is relatively flexible when bound to AChBP. When hydrodynamic and anisotropy decay analyses are taken together, they establish that only one face of the second loop of the alpha-neurotoxin is immobilized significantly by its binding. The results indicate that bound alpha-neurotoxin is not rigidly oriented on the surface of AChBP but rather exhibits segmental motion by virtue of flexibility in its fingerlike structure.  相似文献   

16.
A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 +/- 14 microm(2)/s in the longitudinal and 52 +/- 16 microm(2)/s in the transverse directions (n = 8, mean +/- SD). Those values are approximately 2 (longitudinal) and approximately 3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes.  相似文献   

17.
We report here a simple method of directly visualizing in automated DNA sequencing chromatograms DNA methylations of different types including cytosine methylations in Hpa II and dcm sites as well as adenine methylations in dam sites. This is made possible by the observation that the extent of incorporation of fluorescently labeled dideoxynucleotides is influenced by the methylated bases in template DNA. This simple approach involves routine automated DNA sequencing without any prior treatment of DNA specific for detecting DNA methylation.  相似文献   

18.
We have developed a fluorescently labeled probe for high-throughput screening of kinase inhibitors using fluorescence correlation spectroscopy. With this probe, we have successfully evaluated the inhibitory activities of known inhibitors of a model kinase, ASK1. Because the probe contains a general kinase inhibitor, staurosporine, we believe that this homogeneous, high-throughput, and simple method can be applied to the inhibitor screening of other kinases as well.  相似文献   

19.
Fluorescence energy homotransfer offers a powerful tool for the investigation of the state of oligomerization of cell surface receptors on a cell-by-cell basis by measuring the polarized components of fluorescence intensity of cells labeled with fluorescently stained antibodies. Here we describe homotransfer-based methods for the flow cytometric detection and analysis of hetero- and homo-associations of cell surface receptors. Homotransfer efficiencies for two- and three-body energy transfer interactions are defined and their frequency distribution curves are computed from the fluorescence anisotropy distributions of multiple-labeled cells. The fractions of receptors involved in homo-clustering is calculated based on the dependence of the fluorescence anisotropy on the surface concentration of the fluorescently stained antibodies. A homotransfer analysis of the homo- and hetero-clustering of the MHCI and MHCII glycoproteins, the cytokine receptor IL-2Ralpha, transferrin receptor and the receptor-type tyrosine phosphatase CD45 on JY B and Kit-225-K6 T cells is presented. We investigated how various factors such as the type of dye, rotational mobility of the dye and dye-targeting antibody, as well as the wavelength of the exciting light affect the homotransfer. We show that the homotransfer technique combined with the high statistical resolution of flow cytometry is an effective tool for detecting different oligomeric states of receptors by using fluorophores having restricted rotational mobility on the time scale of fluorescence.  相似文献   

20.
The 26S proteasome is the molecular machine at the center of the ubiquitin proteasome system and is responsible for adjusting the concentrations of many cellular proteins. It is a drug target in several human diseases, and assays for the characterization of modulators of its activity are valuable. The 26S proteasome consists of two components: a core particle, which contains the proteolytic sites, and regulatory caps, which contain substrate receptors and substrate processing enzymes, including six ATPases. Current high-throughput assays of proteasome activity use synthetic fluorogenic peptide substrates that report directly on the proteolytic activity of the proteasome, but not on the activities of the proteasome caps that are responsible for protein recognition and unfolding. Here, we describe a simple and robust assay for the activity of the entire 26S proteasome using fluorescence anisotropy to follow the degradation of fluorescently labeled protein substrates. We describe two implementations of the assay in a high-throughput format and show that it meets the expected requirement of ATP hydrolysis and the presence of a canonical degradation signal or degron in the target protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号